New Efficient Algorithm for Detection of Horizontal Gene Transfer Events

  • Alix Boc
  • Vladimir Makarenkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2812)


This article addresses the problem of detection of horizontal gene transfers (HGT) in evolutionary data. We describe a new method allowing to predict the ways of possible HGT events which may have occurred during the evolution of a group of considered organisms. The proposed method proceeds by establishing differences between topologies of species and gene phylogenetic trees. Then, it uses a least-squares optimization procedure to test the possibility of horizontal gene transfers between any couple of branches of the species tree. In the application section we show how the introduced method can be used to predict eventual transfers of the rubisco rbcL gene in the molecular phylogeny including plastids, cyanobacteria, and proteobacteria.


Species Tree Gene Tree Horizontal Gene Transfer Lateral Gene Transfer rbcL Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bryant, D., Waddell, P.: Rapid evaluation of least-squares and minimum evolution criteria on phylogenetic trees. Mol. Biol. Evol. 15, 1346–1359 (1998)Google Scholar
  2. 2.
    Buneman, P.: A note on metric properties of trees. Jl Comb. Theory B. 17, 48–50 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Charleston, M.A.: Jungle: a new solution to the host/parasite phylogeny reconciliation problem. Math. Biosci. 149, 191–223 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On distances between phylogenetic trees. In: Proc. 8th Annual ACM-SIAM Symposium on discrete Algorithms, SODA 1997, pp. 427–436 (1997)Google Scholar
  5. 5.
    Delwiche, C.F., Palmer, J.D.: Rampant horizontal transfer and duplication of Rubisco genes in Eubacteria and Plastids. Mol. Biol. Evol. 13(6), 873–882 (1996)Google Scholar
  6. 6.
    Doolittle, W.F.: Phylogenetic classification and the universal tree. Science 284, 2124–2128 (1999)CrossRefGoogle Scholar
  7. 7.
    Felsenstein, J.: An alternating least-squares approach to inferring phylogenies from pairwise distances. Syst. Biol. 46, 101–111 (1997)CrossRefGoogle Scholar
  8. 8.
    Gascuel, O.: BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data, Mol. Mol. Biol. Evol. 14(7), 685–695 (1997)Google Scholar
  9. 9.
    Guig, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogenies. Mol. Phyl. Evol. 6(2), 189–213 (1996)CrossRefGoogle Scholar
  10. 10.
    Hallet, M., Lagergreen, J.: Efficient algorithms for lateral gene transfer problems. In: RECOMB, pp. 149–156 (2001)Google Scholar
  11. 11.
    Hein, J.: A heuristic method to reconstructing the evolution of sequences subject to recombination using parsimony. Math. Biosci., 185–200 (1990)Google Scholar
  12. 12.
    Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionnary treees. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 177–190. Springer, Heidelberg (1995)Google Scholar
  13. 13.
    Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionnary trees. Discr. Appl. Math. 71, 153–169 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker, C.T., Saxman, P.R., Farris, R.J., Garrity, G.M., Olsen, G.J., Schmidt, T.M., Tiedje, J.M.: The RDP-II (ribosomal database project). Nucleic Acids Research 29, 173–174 (2001)CrossRefGoogle Scholar
  15. 15.
    Makarenkov, V., Leclerc, B.: An algorithm for the fitting of a phylogenetic tree according to a weighted least-squares criterion. J. of Classif. 16(1), 3–26 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Makarenkov, V.: T-Rex: reconstructing and visualizing phylogenetic trees and reticulation networks. Bioinformatics 17, 664–668 (2001)CrossRefGoogle Scholar
  17. 17.
    Olsen, G.J., Woese, C.R.: Archael genomics an overview. Cell 89, 991–994 (1997)CrossRefGoogle Scholar
  18. 18.
    Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among genes, organism and areas. Syst. Biol. 43, 58–77 (1994)Google Scholar
  19. 19.
    Page, R.D.M., Charleston, M.A.: From gene to organismal phylogeny: Reconciled trees. Bioinformatics 14, 819–820 (1998)CrossRefGoogle Scholar
  20. 20.
    Saitou, N., Nei, M.: The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)Google Scholar
  21. 21.
    Sneath, P.H.: Reticulate evolution in bacteria and other organisms: How can we study it? J. Classif. 17, 159–163 (2000)CrossRefMathSciNetGoogle Scholar
  22. 22.
    The NCBI handbook [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information, Ch. 17, The Reference Sequence (RefSeq) Project (October 2002)Google Scholar
  23. 23.
    von Haseler, A., Churchill, G.A.: Network models for sequence evolution. J. Mol. Evol. 37, 77–85 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alix Boc
    • 1
  • Vladimir Makarenkov
    • 1
    • 2
  1. 1.Département d’InformatiqueUniversité du Québec à MontréalMontréal (Québec)Canada
  2. 2.Institute of Control SciencesMoscowRussia

Personalised recommendations