Consensus Networks: A Method for Visualising Incompatibilities in Collections of Trees

  • Barbara Holland
  • Vincent Moulton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2812)


We present a method for summarising collections of phylogenetic trees that extends the notion of consensus trees. Each branch in a phylogenetic tree corresponds to a bipartition or split of the set of taxa labelling its leaves. Given a collection of phylogenetic trees, each labelled by the same set of taxa, all those splits that appear in more than a predefined threshold proportion of the trees are displayed using a median network. The complexity of this network is bounded as a function of the threshold proportion. We demonstrate the method for a collection of 5000 trees resulting from a Monte Carlo Markov Chain analysis of 37 mammal mitochondrial genomes, and also for a collection of 80 equally parsimonious trees resulting from a heuristic search on 53 human mitochondrial sequences.


Monte Carlo Markov Chain Mitochondrial Genome Consensus Tree Parsimonious Tree Phylogenetic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amenta, N., Klingner, J.: Case Study: Visualizing Sets of Evolutionary Trees. In: 8th IEEE Symposium on Information Visualization, InfoVIs 2002 (2002)Google Scholar
  2. 2.
    Bandelt, H.-J., Dress, A.: Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution 1(3), 242–252 (1992)CrossRefGoogle Scholar
  3. 3.
    Bandelt, H.-J.: Phylogenetic Networks. Verhandl. Naturwiss. Vereins Hamburg (NF) 34, 51–71 (1994)Google Scholar
  4. 4.
    Bandelt, H.-J., Forster, P., Sykes, B.C., Richards, M.B.: Mitochondrial portraits of human populations using median networks. Genetics 14, 743–753 (1995)Google Scholar
  5. 5.
    Bandelt, H.-J., Huber, K.T., Moulton, V.: Quasi-median graphs from sets of partitions. Discrete Applied Mathematics 122, 23–35 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bryant, D.: A classification of consensus methods for phylogenetics. In: Janowitz, M., Lapointe, F.J., McMorris, F., Mirkin, B., Roberts, F. (eds.) Bioconsensus. DIMACSAMS. 2003, pp. 1–21 (2003)Google Scholar
  7. 7.
    Bryant, D., Moulton, V.: NeighborNet: an agglomerative method for the construction of planar phylogenetic networks. In: the proceedings of WABI, pp. 375–391 (2002)Google Scholar
  8. 8.
    Dress, A., Klucznik, M., Koolen, J., Moulton, V.: A note on extremal combinatorics of cyclic split systems. Seminaire Lotharingien de Combinatoire 47 (2001),
  9. 9.
    Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985)CrossRefGoogle Scholar
  10. 10.
    Hendy, M.D., Steel, M.A., Penny, D., Henderson, I.M.: Families of trees and consensus. In: Bock, H.H. (ed.) Classification and Related Methods of Data Analysis, pp. 355–362. Elsevier Science Publ, North Holland (1988)Google Scholar
  11. 11.
    Huber, K.T., Langton, M., Penny, D., Moulton, V., Hendy, M.: Spectronet: A package for computing spectra and median networks. Applied Bioinformatics 1, 159–161 (2002)Google Scholar
  12. 12.
    Huber, K.T., Moulton, V., Lockhart, P., Dress, A.: Pruned median networks: a technique for reducing the complexity of median networks. Molecular Phylogenetics and Evolution 19, 302–310 (2001)CrossRefGoogle Scholar
  13. 13.
    Huelsenbeck, J.P., Larget, B., Miller, R.E., Ronquist, F.: Potential applications and pitfalls of Bayesian inference of phylogeny. Syst. Biol. 51, 673–688 (2002)CrossRefGoogle Scholar
  14. 14.
    Huelsenbeck, J.P., Ronquist, F.: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001)CrossRefGoogle Scholar
  15. 15.
    Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P.: Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314 (2001)CrossRefGoogle Scholar
  16. 16.
    Huson, D.: SplitsTree: a program for analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73 (1998), CrossRefGoogle Scholar
  17. 17.
    Ingman, M., Kaessmann, H., Paabo, S., Gyllensten, U.: Mitochondrial genome variation and the origin of modern humans. Science 408, 708–713 (2000)Google Scholar
  18. 18.
    Klingner, J.: Visualizing Sets of Evolutionary Trees. The University of Texas at Austin, Department of Computer Sciences. Technical Report CS-TR-01-26 (2001)Google Scholar
  19. 19.
    Lin, Y.-H., McLenachan, P.A., Gore, A.R., Phillips, M.J., Ota, R., Hendy, M.D., Penny, D.: Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Molecular Biology and Evolution 19, 2060–2070 (2002)Google Scholar
  20. 20.
    Lin, Y.-H., Waddell, P.J., Penny, D.: Pika and Vole mitochondrial genomes add support to both rodent monophyly and glires. Gene 294, 119–129 (2002)CrossRefGoogle Scholar
  21. 21.
    Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  22. 22.
    Swofford, D.L.: PAUP* - Phylogenetic Analysis Using Parsimony (*and other methods) Version 4. Sinauer Associates, Sunderland, Mass. (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Barbara Holland
    • 1
  • Vincent Moulton
    • 2
  1. 1.Allan Wilson Centre for Molecular Ecology and EvolutionMassey UniversityNew Zealand
  2. 2.The Linnaeus Centre for BioinformaticsUppsala UniversityUppsalaSweden

Personalised recommendations