A Local Chaining Algorithm and Its Applications in Comparative Genomics

  • Mohamed Ibrahim Abouelhoda
  • Enno Ohlebusch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2812)


Given fragments from multiple genomes, we will show how to find an optimal local chain of colinear non-overlapping fragments in sub-quadratic time, using methods from computational geometry. A variant of the algorithm finds all significant local chains of colinear non-overlapping fragments. The local chaining algorithm can be used in a variety of problems in comparative genomics: The identification of regions of similarity (candidate regions of conserved synteny), the detection of genome rearrangements such as transpositions and inversions, and exon prediction.


Priority Queue Global Alignment Local Chain Sweeping Process Optimal Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abouelhoda, M.I., Ohlebusch, E.: Multiple genome alignment: Chaining algorithms revisited. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 1–16. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: The enhanced suffix array and its applications to genome analysis. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 449–463. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: A basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)Google Scholar
  4. 4.
    Batzoglou, S., Pachter, L., Mesirov, J.P., Berger, B., Lander, E.S.: Human and mouse gene structure: Comparative analysis and application to exon prediction. Genome Research 10, 950–958 (2001)CrossRefGoogle Scholar
  5. 5.
    Bently, J.L.: K-d trees for semidynamic point sets. In: 6th Annual ACM Symposium on Computational Geometry, pp. 187–197. ACM, New York (1990)CrossRefGoogle Scholar
  6. 6.
    Blattner, F.R., et al.: The complete genome sequence of Escherichia coli K-12. Science 277(5331), 1453–1474 (1997)CrossRefGoogle Scholar
  7. 7.
    Bray, N., Dubchak, I., Pachter, L.: AVID: A global alignment program. Genome Research 13, 97–102 (2003)CrossRefGoogle Scholar
  8. 8.
    Brudno, M., Morgenstern, B.: Fast and sensitive alignment of large genomic sequences. In: Proceedings of the IEEE Computer Society Bioinformatics Conference, pp. 138–150. IEEE, Los Alamitos (2002)CrossRefGoogle Scholar
  9. 9.
    Chain, P., Kurtz, S., Ohlebusch, E., Slezak, T.: An applications-focused review of comparative genomics tools: Capabilities, limitations and future challenges. Briefings in Bioinformatics 4(2) (2003)Google Scholar
  10. 10.
    Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM Journal on Computing 17(3), 427–462 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O., Salzberg, S.L.: Alignment of whole genomes. Nucleic Acids Res. 27, 2369–2376 (1999)CrossRefGoogle Scholar
  12. 12.
    Delcher, A.L., Phillippy, A., Carlton, J., Salzberg, S.L.: Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30(11), 2478–2483 (2002)CrossRefGoogle Scholar
  13. 13.
    Eisen, J.A., Heidelberg, J.F., White, O., Salzberg, S.L.: Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biology 1(6), 1–9 (2000)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Eppstein, D., Giancarlo, R., Galil, Z., Italiano, G.F.: Sparse dynamic programming. I:Linear cost functions; II:Convex and concave cost functions. Journal of the ACM 39, 519–567 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Heidelberg, J.F., et al.: DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483 (2000)CrossRefGoogle Scholar
  17. 17.
    Himmelreich, R., Plagens, H., Hilbert, H., Reiner, B., Herrmann, R.: Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium. Nucleic Acids Res. 25, 701–712 (1997)CrossRefGoogle Scholar
  18. 18.
    Hughes, D.: Evaluating genome dynamics: The constraints on rearrangements within bacterial genomes. Genome Biology 1(6), reviews 0006.1–0006.8 (2000)Google Scholar
  19. 19.
    Johnson, D.B.: A priority queue in which initialization and queue operations take O(log logD) time. Math. Sys. Theory 15, 295–309 (1982)zbMATHCrossRefGoogle Scholar
  20. 20.
    Kent, W.J., Zahler, A.M.: Conservation, regulation, synteny, and introns in a large-scale C.briggsae-C.elegans genomic alignment. Genome Research 10, 1115–1125 (2000)CrossRefGoogle Scholar
  21. 21.
    Lee, D.T., Wong, C.K.: Worst-case analysis for region and partial region searches in multidimensional binary search trees and balanced quad trees. Acta Informatica 9, 23–29 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Höhl, M., Kurtz, S., Ohlebusch, E.: Efficient multiple genome alignment. In: Proceedings of the 10th International Conference on Intelligent Systems for Molecular Biology. Bioinformatics, vol. 18(Suppl. 1), pp. 312–320 (2002)Google Scholar
  23. 23.
    Morgenstern, B.: A space-efficient algorithm for aligning large genomic sequences. Bioinformatics 16, 948–949 (2000)CrossRefGoogle Scholar
  24. 24.
    Myers, E.W., Miller, W.: Chaining multiple-alignment fragments in subquadratic time. In: Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms, pp. 38–47 (1995)Google Scholar
  25. 25.
    Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448 (1988)CrossRefGoogle Scholar
  26. 26.
    Preparata, F.P., Shamos, M.I.: Computational geometry: An introduction. Springer, New York (1985)Google Scholar
  27. 27.
    Roytberg, M.A., Ogurtsov, A.Y., Shabalina, S.A., Kondrashov, A.S.: A hierarchical approach to aligning collinear regions of genomes. Bioinformatics 18, 1673–1680 (2002)CrossRefGoogle Scholar
  28. 28.
    Schwartz, S., Kent, J.K., Smit, A., Zhang, Z., Baertsch, R., Hardison, R., Haussler, D., Miller, W.: Human-mouse alignments with BLASTZ. Genome Research 13, 103–107 (2003)CrossRefGoogle Scholar
  29. 29.
    Schwartz, S., Zhang, Z., Frazer, K.A., Smit, A., Riemer, C., Bouck, J., Gibbs, R., Hardison, R., Miller, W.: PipMaker—A web server for aligning two genomic DNA sequences. Genome Research 10(4), 577–586 (2000)CrossRefGoogle Scholar
  30. 30.
    van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Information Processing Letters 6(3), 80–82 (1977)zbMATHCrossRefGoogle Scholar
  31. 31.
    Vincens, P., Buffat, L., Andre, C., Chevrolat, J.P., Boisvieux, J.F., Hazout, S.: A strategy for finding regions of similarity in complete genome sequences. Bioinformatics 14, 715–725 (1998)CrossRefGoogle Scholar
  32. 32.
    Zhang, Z., Raghavachari, B., Hardison, R.C., Miller, W.: Chaining multiplealignment blocks. J. Computational Biology 1, 51–64 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Mohamed Ibrahim Abouelhoda
    • 1
  • Enno Ohlebusch
    • 2
  1. 1.Faculty of TechnologyUniversity of BielefeldBielefeldGermany
  2. 2.Faculty of Computer ScienceUniversity of UlmUlmGermany

Personalised recommendations