Memory Compaction and Power Optimization for Wavelet-Based Coders

  • V. Ferentinos
  • M. Milia
  • G. Lafruit
  • J. Bormans
  • F. Catthoor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2799)


A methodology for memory optimization in wavelet-based coders is presented. The dynamic memory requirements of the ASAP forward Wavelet Transform (WT) in three different output data grouping modes are studied: (a) independent output blocks with dyadically decreasing sizes; (b) zero-tree blocks and (c) independent equally-sized blocks. We propose an optimal approach of data clustering and calculation scheduling aiming at minimal memory requirements. This goal is reached using an appropriate subdivision of the filter inputs and it is verified with the assistance of an automatic design tool. The importance of the data dependencies between the different functional modules is shown to be dominant.


Discrete Wavelet Transform Wavelet Transform Memory Requirement Data Dependency Memory Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Catthoor, F., Wuytack, S., De Greef, E., Balasa, F., Nachtergaele, L., Vandecappelle, A.: Custom memory management methodology: exploration of memory organization for embedded multimedia system design. Kluwer Acad. Publ., Dordrecht (1998) ISBN 0-7923-8288-9Google Scholar
  2. 2.
    Catthoor, F., Danckaert, K., Kulkarni, C., Brockmeyer, E., Kjeldsberg, P.G., Van Achteren, T., Omnes, T.: Data access and storage management for embedded programmable processors. Kluwer Acad. Publ., Boston (2002) ISBN 0-7923-7689-7zbMATHGoogle Scholar
  3. 3.
    Catthoor, F., Danckaert, K., Kulkarni, C., Brockmeyer, E., Kjeldsberg, P.G., Van Achteren, T., Omnes, T.: Information technology - Coding of audio-visual objects - Part 2: Visual, ISO/IEC JTC 1/SC 29/WG 11 N 3056 Maui (December 1999)Google Scholar
  4. 4.
    Sodagar, I., Lee, H.J., Hatrack, P., Zhang, Y.Q.: Scalable Wavelet Coding for Synthetic/ Natural Hybrid Images. IEEE Transactions on Circuits and Systems for Video Technology 9(2), 244–254 (1999)CrossRefGoogle Scholar
  5. 5.
    Sodagar, I., Lee, H.J., Hatrack, P., Zhang, Y.Q.: JPEG, Image Coding System, ISO/IEC JTC 1/SC29/WG1, FCD 15444-1 (2000)Google Scholar
  6. 6.
    Skodras, A., Christopoulos, C., Ebrahimi, T.: The JPEG 2000 still image compression standard. IEEE Signal Processing Magazine 18(5), 36–58 (2001)CrossRefGoogle Scholar
  7. 7.
    Taubman, D.S., Marcellin, M.W.: JPEG 2000: Image compression fundamentals, standards and practice. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  8. 8.
    Lafruit, G., Bormans, J.: Assessment of MPEG-4 VTC and JPEG 2000 Dynamic Memory Requirements. In: International Workshop on System-on-Chip for Real-Time Applications, pp. 276–286 (2002) (invited paper)Google Scholar
  9. 9.
    Vishwanath, M.: The Recursive Pyramid Algorithm for the Discrete Wavelet Transform. IEEE Transactions on Signal Processing 42(3), 673–676 (1994)CrossRefGoogle Scholar
  10. 10.
    Lafruit, G., Nachtergaele, L., Bormans, J., Engels, M., Bolsens, I.: Optimal Memory Organization for Scalable Texture Codecs in MPEG-4. IEEE Transactions onCircuits and Systems for Video Technology 9(2), 218–243 (1999)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Lafruit, G., Andreopoulos, Y., Masschelein, B.: Reduced Memory Requirements in Modified JPEG 2000 codec. In: International Conference on Digital Signal Processing 2002, CD-ROM T2C.4, pp. 1–8 (2002)Google Scholar
  13. 13.
    Chen, C.Y., Yang, Z.L., Wang, T.C., Chen, L.G.: A Programmable Parallel VLSI Architecture for 2-D Discrete Wavelet Transform. Journal of VLSI Signal Processing 2001 28, 151–163 (2001); Revised April 2000zbMATHCrossRefGoogle Scholar
  14. 14.
    Simons, T., Chandrakasan, A.P.: An Ultra Low Power Adaptive Wavelet Video Encoder with Integrated Memory. IEEE Journal of Solid State Circuits 35(4), 218–243 (2000)Google Scholar
  15. 15.
    Ferretti, M., Rizzo, D.: A Parallel Architecture for 2-D Discrete Wavelet Transform with Integer Lifting Scheme. Journal of VLSI Signal Processing 2001 28, 165–185 (2001); Revised April 2000zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • V. Ferentinos
    • 1
  • M. Milia
    • 1
  • G. Lafruit
    • 1
  • J. Bormans
    • 1
  • F. Catthoor
    • 1
  1. 1.IMEC-DESICSLeuven-HeverleeBelgium

Personalised recommendations