Advertisement

Static Implementation of QDI Asynchronous Primitives

  • P. Maurine
  • J. B. Rigaud
  • F. Bouesse
  • G. Sicard
  • M. Renaudin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2799)

Abstract

To fairly compare the performance of an asynchronous ASIC to its homologous synchronous one requires the availability of a dedicated asynchronous library. In this paper we present TAL_130nm a standard cell library dedicated to the design of QDI asynchronous circuits. Cell selection and sizing rules applied to develop TAL_130nm are detailed. It is shown that significant area and power savings as well as speed improvements can be obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chelcea, T., Bardsley, A., Edwards, D.A., Nowick, S.M.: A Burst-Mode Oriented Back-End for the Balsa Synthesis System. In: Proceedings of DATE 2002, Paris, March 2002, pp. 330–337 (2002)Google Scholar
  2. 2.
    Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: a tool for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE Transactions on Information and Systems E80-D(3), 315–325 (1997)Google Scholar
  3. 3.
    Renaudin, M., et al.: TAST. In: Tutorial given at the 8th international Symposium on Advanced Research in Asynchronous Circuits and Systems, Manchester, UK (April 8-11, 2002)Google Scholar
  4. 4.
    Sakurai, T., Newton, A.R.: Alpha-power model, and its application to CMOS inverter delay and other formulas. J. of Solid State Circuits 25, 584–594 (1990)CrossRefGoogle Scholar
  5. 5.
    Maurine, P., Rezzoug, M., Azemard, N., Auvergne, D.: Transition Time modelling in Deep Submicron CMOS. IEEE trans. on CAD of IC and Systems 21(1) (November 2002)Google Scholar
  6. 6.
    Chatzigeorgiou, A., Nikolaidis, S., Tsoukalas, I.: A modelling technique for CMOS gates. IEEE Trans on CAD oflntegrated Circuits and Systems 18(5) (May 1999)Google Scholar
  7. 7.
    Cherkauer, B.S., Friedman, E.G.: A Unified Design Methodology for CMOS Tapered Buffers. IEEE Transactions on VLSI Systems 3(1), 99–111 (1995)CrossRefGoogle Scholar
  8. 8.
    Hedenstierna, N., Jeppson, K.O.: CMOS Circuit Speed and Buffer Optimization. IEEE transactions on CAD CAD-6(2), 270–281 (1987)Google Scholar
  9. 9.
    Piguet, C., Zhand, J.: Electrical Design of Dynamic and Static Speed Independent CMOS Circuits from Signal Transistion Graphs. In: PATMOS 1998, pp. 357–366 (1998)Google Scholar
  10. 10.
    Sutherland, I., Sproull, B., Harris, D.: Logical Effort: Designing Fast CMOS Circuits. Morgan Kaufmann Publishers, Inc., San Francisco (1999)Google Scholar
  11. 11.
    Mead, C., Conway, N.: introduction to VLSI. Addison Wesley, Reading (1980)Google Scholar
  12. 12.
    Renaudin, M.: Asynchronous Circuits and Systems: a promising design alternative. In: Microelectronics for Telecommunications: managing high complexity and mobility, MIGAS 2000 (2000); Special issue of the Microelectronics-Engineering Journal. Elsevier Science, Guest Editors : Senn, P., Renaudin, M., Boussey, J. vol. 54(1-2), pp. 133—149 (December 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • P. Maurine
    • 1
    • 2
  • J. B. Rigaud
    • 1
    • 2
  • F. Bouesse
    • 1
    • 2
  • G. Sicard
    • 1
    • 2
  • M. Renaudin
    • 1
    • 2
  1. 1.LIRMMMontpellier Cedex 5France
  2. 2.TIMA LaboratoryGrenoble CedexFrance

Personalised recommendations