Power/Area Tradeoffs in 1-of-M Parallel-Prefix Asynchronous Adders

  • João Leonardo Fragoso
  • Gilles Sicard
  • Marc Renaudin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2799)


This work describes generalized structures to design 1-of-M QDI (Quasi Delay-Insensitive) asynchronous adders. Those structures allow to design from simple ripple-carry adders to faster parallel-prefix adders. The proposed method is fully automated and integrated in TAST (TIMA Asynchronous Synthesis Tool) tools suite. This paper also demonstrates that the most widely used dual-rail encoding (binary representation in QDI circuits) is not the best solution for numbers’ representation in asynchronous circuits. In fact, according to the domain of values to be represented increasing the radix leads to parallel-prefix adders with lower area, delay and power consumption. Hence, this work enables the designer to optimize his/her design by choosing the appropriate 1-of-M number representation.


Computation Tree Regular Layout Asynchronous Circuit Grey Node Output Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Udding, J.T.: A formal model for defining and classifying delay-insensitive circuits and systems. Distributed Computing 1, 197–204 (1986)CrossRefGoogle Scholar
  2. 2.
    Stevens, K., et al.: An asynchronous instruction length decoder. IEEE JSSC 36(2), 217–228 (2001)Google Scholar
  3. 3.
    Coates, W., et al.: FLETzero: an asynchronous switching experiment. In: Proceedings of ASYNC, pp. 173–182 (2001)Google Scholar
  4. 4.
    Woods, J., Day, P., Furber, S., Garside, J., Paver, N., Temple, S.: AMULET1: an asynchronous ARM microprocessor. IEEE Transaction on Computers 46(4), 385–398 (1997)CrossRefGoogle Scholar
  5. 5.
    Renaudin, M.: Asynchronous circuits and systems: a promising design alternative. Journal of microelectronic engineering 54, 133–149 (2000)CrossRefGoogle Scholar
  6. 6.
    Dinh Duc, A.V., et al.: TAST CAD Tools. In: 2nd Asynchronous Circuit Design Workshop, Munich-Germany (January 28–29, 2002)Google Scholar
  7. 7.
    Renaudin, M., Vivet, P., Robin, F.: A Design Framework for Asynchronous/Synchronous Circuits Based on CHP to HDL Translation. In: International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC), Barcelona, Spain, April 19– 21, pp. 135–144 (1999)Google Scholar
  8. 8.
    Martin, A.J.: Synthesis of Asynchronous VLSI Circuits. Internal Report, Caltech-CS_TR- 93–28, California Institute of Technology, Pasadena (1993)Google Scholar
  9. 9.
    Rigaud, J.-B., Renaudin, M.: Modeling and design/synthesis of arbitration problems. In: AINT 2000, Proceedings of the Asynchronous Interfaces: Tools, Techniques and Implementations Work-shop, TU Delft, The Netherlands, July 19–20, pp. 121–128 (2000)Google Scholar
  10. 10.
    Rigaud, J.-B., Quartana, J., Fesquet, L., Renaudin, M.: High-Level Modeling and Design of Asynchronous Arbiters for On-Chip Communication Systems. In: Design Automation and Test Conference (DATE), Paris, France (March 4–7, 2002)Google Scholar
  11. 11.
    Sklansky, J.: Conditional-sum addition logic. IRE Trans. Electronic Computers 9(2), 226–231 (1960)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Brent, R., Kung, H.: A Regular Layout for Parallel Adders. IEEE Transactions on Computers C-31(3), 260–264 (1982)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kogge, P., Stone, H.: A Parallel Algorithm for the Efficient Solution of General Class of Recurrence Equation. IEEE Trans. on Computers 22(8), 783–791 (1973)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Sparsø, J., Staunstrup, J., Dantzer-Sørensen, M.: Design of delay insensitive circuits using multi-ring structures. In: Proceedings of EURO–DAC, Germany, pp. 15–20 (1992)Google Scholar
  15. 15.
    David, I., Ginosar, R., Yoeli, M.: An efficient implementation of Boolean functions as selftimed circuits. IEEE Transactions on Computers 41(1), 2–11 (1992)CrossRefGoogle Scholar
  16. 16.
    Kondratyev, A., Lwin, K.: Design of asynchronous circuits using synchronous CAD tools. IEEE Design and Test of Computers 19(4), 107–117 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • João Leonardo Fragoso
    • 1
  • Gilles Sicard
    • 1
  • Marc Renaudin
    • 1
  1. 1.TIMA Laboratory / CIS GroupGrenoble CedexFRANCE

Personalised recommendations