Advertisement

Effects of Temperature in Deep-Submicron Global Interconnect Optimization

  • M. R. Casu
  • M. Graziano
  • G. Piccinini
  • G. Masera
  • M. Zamboni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2799)

Abstract

The resistance of on-chip interconnects and the current drive of transistors is strongly temperature dependent. As a result, the interconnect performance is affected by the temperature in a sizeable proportion. In this paper we evaluate thermal effects in global RLC interconnects and quantify their impact in a standard optimization procedure in which repeaters are used. By evaluating the difference between a simple RC and an accurate RLC model, we show how the temperature induced increase of resistance may reduce the impact of inductance. We also project the evolution of such effects in future technology nodes, according to the semiconductor roadmap.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakoglu, H.B.: Circuits, Interconnections and Packaging for VLSI. Addison-Wesley, Reading (1990)Google Scholar
  2. 2.
    Sakurai, T.: Closed Form Expressions for Interconnection Delay, Coupling, and Crosstalk in VLSI’s. IEEE Trans. on Electron Devices 40(1), 118–124 (1993)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Deutsch, A., et al.: On-chip Wiring Design Challenges for Gigahertz Operation. Proc. IEEE 89(4), 529–555 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ismail, Y.I., Friedman, E.G.: Effects of Inductance on the Propagation Delay and Repeater Insertion in VLSI Circuits. IEEE Trans. on VLSI 8(2), 195–206 (2000)CrossRefGoogle Scholar
  5. 5.
    Ajami, A.H., et al.: Analysis of Non-Uniform Temperature-Dependent Interconnect Performance in High Performance ICs. In: Proc. DAC 2001, pp. 567–572 (2001)Google Scholar
  6. 6.
    Ajami, A.H., et al.: Analysis of Substrate Thermal Gradient Effects on Optimal Buffer Insertion. In: Proc. of ICCAD, November 2001, pp. 44–48 (2001)Google Scholar
  7. 7.
    The national technology roadmap for semiconductors, SIA (2001)Google Scholar
  8. 8.
    Kapur, P., et al.: Technology and Reliability Constrained Future Copper Interconnects–Part I: Resistance Modeling. IEEE Trans. on Electron Devices 49(4), 590–597 (2002)CrossRefGoogle Scholar
  9. 9.
    Sylvester, D., Hu, C.: Analytical Modeling and Characterization of Deep- Submicrometer Interconnect. Proc. IEEE 89(5), 634–664 (2001)CrossRefGoogle Scholar
  10. 10.
    Sylvester, D., Keutzer, K.: Impact of Small Process Geometries on Microarchitectures in Systems on a Chip. Proc. IEEE 89(4), 467–489 (2001)CrossRefGoogle Scholar
  11. 11.
    Chern, J.H.: Multilevel Metal Capacitance Models for CAD Design Synthesis Systems. IEEE Electron Device Letters 13, 32–34 (1992)CrossRefGoogle Scholar
  12. 12.
    Grover, F.W.: Inductance Calculations: Working Formulas and Tables. Van Nostrand, New York (1946)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. R. Casu
    • 1
  • M. Graziano
    • 1
  • G. Piccinini
    • 1
  • G. Masera
    • 1
  • M. Zamboni
    • 1
  1. 1.Dipartimento di ElettronicaPolitecnico di TorinoTorinoItaly

Personalised recommendations