Skip to main content

Computerized Atlas-Guided Positioning of Deep Brain Stimulators: A Feasibility Study

  • Conference paper
Biomedical Image Registration (WBIR 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2717))

Included in the following conference series:

Abstract

Optimal placement of a deep brain stimulator (DBS) is an iterative procedure. A target is chosen preoperatively based on anatomical landmarks identified on MR images. This point is used as an initial position that is refined intraoperatively using both micro-electrode recordings and macrostimulation. Because the length of the procedure increases with the time it takes to adjust the DBS to its final position, a good initial position is critical. In this work we ex- plore the possibility of using an atlas and non-rigid registration algorithms to select the initial position automatically. We compare the initial DBS position obtained with this approach and the initial position selected by a neurosurgeon with the final position for eight STN (subthalamic nucleus) cases. Our results show that the automatic method leads to initial positions that are closer to the final positions than the initial positions selected manually.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deuschl, R.G., Volkmann, J., Krack, P.: Deep brain stimulation for movement disorders. Movement Disorders 17 (Suppl. 3), S1-S1 (2002)

    Google Scholar 

  2. Schrader, B., Hamel, W., Weinert, D., Mehdorn, H.M.: Documentation of electrode localization. Movement Disorders 17 (Suppl. 3), S167-S174 (2002)

    Google Scholar 

  3. Vitek, J.L.: Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 17 (Suppl. 3), S69-S72 (2002)

    Google Scholar 

  4. Lozano, A.M.: Deep brain stimulation for Parkinson’s disease  7(3), 199–203 (2001)

    Google Scholar 

  5. Galloway, R.L., Maciunas, R.J.: Stereotactic neurosurgery. Crit. Rev. Biomed. Eng. 18(3), 181–205 (1990)

    Google Scholar 

  6. Franck, J., Konrad, P., Franklin, R., Haer, F., Hawksley, D.: STarFix: A Novel Approach to Frameless Stereotactic Neurosurgery Utilizing a Miniaturized Customized Pretargeted Cranial Platform Fixture – Technical Description, Unique Features, and Case Reports. In: Movement Disorders Society, 7th Intl. Congress of Parkinsons Disease & Movement Disorder, Miami, FL (November 2002)

    Google Scholar 

  7. Maurer Jr., C.R., Fitzpatrick, J.M., Wang, M.Y., Galloway Jr., R.L., Maciunas, R.J., Allen, G.S.: Registration of head volume images using implantable fiducial markers. IEEE Trans. Med. Imaging 16, 447–462 (1997)

    Article  Google Scholar 

  8. Thirion, J.-P.: “Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)

    Article  Google Scholar 

  9. Rhode, G., Aldroubi, A., Dawant, B.M.: The Adaptive-bases algorithm for intensitybased nonrigid image registration. IEEE Transactions on Medical Imaging (2003) (in press)

    Google Scholar 

  10. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  11. Meyer, C.R., et al.: Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate. Medical Image Analysis 3, 195–206 (1997)

    Article  Google Scholar 

  12. Maes, F., Collignon, A., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transaction on Medical Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  13. Atkinson, J.D., Collins, D.L., Bertrand, G., Peters, T.M., Pike, G.B., Sadikot, A.F.: Optimal location of thalamotomy lesions for tremor associated with Parkinson Disease: a probabilistic analysis based on postoperative magnetic resonance imaging and an integrated digital atlas. J. Neurosurgery 96, 854–866 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dawant, B.M., Li, R., Cetinkaya, E., Kao, C., Fitzpatrick, J.M., Konrad, P.E. (2003). Computerized Atlas-Guided Positioning of Deep Brain Stimulators: A Feasibility Study. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds) Biomedical Image Registration. WBIR 2003. Lecture Notes in Computer Science, vol 2717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39701-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39701-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20343-8

  • Online ISBN: 978-3-540-39701-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics