Skip to main content

Integration and Segregation of Perceptual and Motor Behavior

  • Chapter
Coordination Dynamics: Issues and Trends

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We are developing a conceptual framework that provides a general basis for the dynamic grouping of individual components. Perceptual grouping is the process by which raw elements are aggregated into larger and more meaningful collections (Feldman, 1999). The emergence and disappearance of such a group has been termed differently in different areas of Science and Philosophy, such as integration and segregation, convergence and divergence, binding and loss thereof. We wish to widen the notion of grouping by viewing motor processes and perceptual processes induced by sensory information as equivalent events over time defined in their appropriate spaces (Kelso et al., 1990). Many operational formalisms for the treatment of the temporal relationship of typically two or four coupled sensorimotor components have been developed within the field of coordination dynamics (see Kelso, 1995 for a review). Within the domain of visual (Feldman, 1999), auditory (Bregman, 1990) and multi-sensory perception (Stein & Meredith, 1993), numerous systematic studies have been performed identifying parameters and conditions under which the formation of percepts changes. Less frequently, the interdependence of percept formation and motor trajectory formation has been studied (Bogaerts et al., 2003). In the current chapter we wish to identify the mutual features and factors determining percept and motor trajectory formation. Here grouping can impose decisive influences on other low-level processes resulting in different percepts, e.g. lightness perception (Gilchrist, 1977), and different movement patterns, e.g. reduced reaction times (Davis, 1959).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baillargeon R (1994) How do infants learn about the physical world? Curr Dir Psychol Sci 3 (5), 133–140

    Article  Google Scholar 

  • Barchilon Ben-Av M, Sagi D, Braun J (1992) Visual attention and perceptual grouping. Percept Psychophys 52 (3), 277–294

    Article  Google Scholar 

  • Barrow HG, Tenenbaum JM (1981) Interpreting line drawing as three-dimensional surfaces. Artif Intell 17, 75–116

    Article  Google Scholar 

  • Beek PJ, Peper CE, Daffertshofer A (2002) Modeling rhythmic interlimb coordination: Beyond the Haken-Kelso-Bunz model. Brain Cognition 48 (1), 149–165

    Article  Google Scholar 

  • Binford T (1981) Inferring surfaces from images. Artif Intell17, 205–244

    Google Scholar 

  • Bogaerts H, Wagemans J, Meulenbroek RGJ, Van den Bergh O, Vangheluwe S, Puttemans V, Wenderoth N, Swinnen SP (2003) Bimanual production of triangular drawing patterns: Exploring symmetry constraints in perception and action. J Motor Behav (in press)

    Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. MIT Press, Cambridge Massachusetts

    Google Scholar 

  • Bushara KO, Hanakawa T, Immisch I, Toma K, Kansaku K, Hallett M (2002) Neural correlates of cross-modal binding. Nat Neurosci 6 (2), 190–195

    Article  Google Scholar 

  • Caelli TM, Umansky J (1976) Interpolation in the visual system. Vision Res16 (10), 1055–1060

    Google Scholar 

  • Carson RG, Riek S, Smethurst CJ, Lison JF, Byblow WD (2000) Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination. Exp Brain Res 131, 196–214

    Article  Google Scholar 

  • Carson RG (2003) Governing coordination. Why do muscles matter? This volume

    Google Scholar 

  • Daffertshofer A, Peper CE, Beek PJ (2000) Spectral analyses of event-related encephalographic signals. Physics Letters A 266 (4–6), 290–302

    Article  Google Scholar 

  • Davis R (1959) The role of “attention” in the psychological refractory period. Q J Exp Psychol 11 (4), 211–220

    Article  Google Scholar 

  • Feldman J (1996) Regularity vs Genericity in the perception of collinearity. Perception 25, 335–342

    Article  Google Scholar 

  • Feldman J (1997) Curvilinearity, covariance, and regularity in perceptual groups. Vision Res 37 (20), 2835–2848

    Article  Google Scholar 

  • Feldman J (1999) The role of objects in perceptual grouping. Acta Psychol 102, 137–163

    Article  Google Scholar 

  • Fuchs A, Kelso JAS, Haken H (1992) Phase Transitions in the Human Brain: Spatial Mode Dynamics. Int J Bifurcat Chaos 2, 917–939

    Article  MATH  Google Scholar 

  • Fuchs A, Jirsa VK (2000) The HKB Model revisited: How varying the degree of symmetry controls dynamics. Hum Movement Sci 19, 425–449

    Article  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Gilchrist AL (1977) Perceived lightness depends on perceived spatial arrangement. Science 195, 185–187

    Article  Google Scholar 

  • Glass L (1969) Moiré effects from random dots. Nature 223, 578–580

    Article  Google Scholar 

  • Gonzalez DL, Piro O (1987) Global bifurcations and phase portrait of an analytically solvable nonlinear oscillator: Relaxation oscillations and saddle-node collisions. Phys Rev A 36, 4402–4410

    Article  MathSciNet  Google Scholar 

  • Guy G, Medioni G (1996) Inferring global perceptual contours from local features. Int J Comput Vision 20, 113–133

    Article  Google Scholar 

  • Grossberg S, Pribe C, Cohen MA (1997) Neural control of interlimb oscillations I. Human bimanual coordination. Biol Cybern 77, 131–140

    Article  MATH  Google Scholar 

  • Haken H (1983) Synergetics. An Introduction. 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Haken H (1996) Principles of brain functioning. Springer, Berlin Heidelberg New York

    Book  MATH  Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A Theoretical Model of Phase transitions in Human Hand Movements. Biol Cybern 51, 347–356

    Article  MathSciNet  MATH  Google Scholar 

  • Herzog HH, Fahle M (2002) Effects of grouping in contextual modulation. Nature 415, 433–436

    Article  Google Scholar 

  • Hock HS, Kelso JAS, Schöner G (1993) Bistability, hysteresis, and phase transitions in the perceptual organization of apparent motion. J Exp Psych Human 19, 63–80

    Article  Google Scholar 

  • Jirsa VK, Friedrich R, Haken H, Kelso JAS (1994) A theoretical model of phase transitions in the human brain. Biol Cybern 71, 27–35

    Article  MATH  Google Scholar 

  • Jirsa VK, Friedrich R, Haken H (1995) Reconstruction of the spatio-temporal dynamics of a human magnetoencephalogram. Physica D 89, 100–122

    Article  MATH  Google Scholar 

  • Jirsa VK, Fuchs A, Kelso JAS (1998) Connecting cortical and behavioral dynamics: Bimanual coordination. Neural Comput 10, 2019–2045

    Article  Google Scholar 

  • Jirsa VK, Fink P, Foo P, Kelso JAS (2000) Parametric stabilization of biological coordination: A theoretical model. J Biol Phys 26, 85–112

    Article  Google Scholar 

  • Jirsa VK, Assisi CG, Dhamala M, Kelso JAS (2003) unpublished data

    Google Scholar 

  • Jirsa VK, Kelso JAS (2003) The Excitator as a minimal model for discrete and rhythmic movement generation. Submitted

    Google Scholar 

  • Kay BA, Kelso JAS, Saltzmann EL, Schöner G (1987) Space-time behavior of single and bimanual rhythmical movements: Data and limit cycle model. J Exp Psychol 13, 178–192

    Google Scholar 

  • Kelso JAS (1981) On the oscillatory basis of movement. B Psychonomic Soc 18, 63

    Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 15, R1000 - R1004

    Google Scholar 

  • Kelso JAS, Southard D, Goodman D (1979) On the nature of human interlimb coordination. Science 203, 1029–1031

    Article  Google Scholar 

  • Kelso JAS, DelColle JD, Schöner G (1990) Action-perception as a pattern formation process. In: Jeannerod M (ed.) Attention and performance XIII. Erlbaum, Hillsdale, NJ, 136–169

    Google Scholar 

  • Kelso JAS, Bressler SL, Buchanan S, DeGuzman GC, Ding M, Fuchs A., Holroyd T (1991) Cooperative and critical phenomena in the human brain revealed by multiple SQUIDS. In: Duke D, Pritchard W (eds.), Measuring Chaos in the Human Brain. World Scientific, New Jersey, 97–112

    Google Scholar 

  • Kelso JAS, Bressler SL, Buchanan S, DeGuzman GC, Ding M, Fuchs A, Holroyd T (1992) A phase transition in human brain and behavior. Phys Lett A 169, 134–144

    Article  Google Scholar 

  • Kelso JAS, Fink P, DeLaplain CR, Carson RG (2001). Haptic information stabilizes and destabilizes coordination dynamics. P Roy Soc B Bio 268, 1207–1213

    Article  Google Scholar 

  • Kelso JAS (1995) Dynamic Patterns. The Self-Organization of Brain and Behavior. The MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Kubovy M, Holcombe AO, Wagemans J (1998) On the lawfulness of grouping by proximity. Cognitive Psychol 35, 71–98

    Article  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer Berlin Heidelberg New York

    Google Scholar 

  • Lee DT, Quincy JA, Chua R (2002) Spatial constraints in bimanual coordination: influences of effector orientation. Exp Brain Res 146, 205–212

    Article  Google Scholar 

  • Mayville JM, Jantzen KJ, Fuchs A, Steinberg FL, Kelso JAS (2002) Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI. Hum Brain Mapp 17, 214–229

    Article  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414, 69–73

    Article  Google Scholar 

  • Mechsner F (2003) A perceptual-cognitive approach to bimanual coordination. This volume

    Google Scholar 

  • Meyer-Lindenberg A, Ziemann U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differing stability in the human brain. Proc Natl Acad Sci USA 99, 10948–10953

    Article  Google Scholar 

  • Nagashino H, Kelso JAS (1992) Phase transitions in oscillatory neural networks. Science of Artificial Neural Networks. SPIE 1710, 278–297

    Google Scholar 

  • Nothdurft HC, Gallant JL, van Essen DC (1999) Response modulation by texture surround in primate area V 1: Correlates of pop-out under anesthesia. Visual Neurosci. 16, 15–34

    Article  Google Scholar 

  • Pizlo Z, Salach-Golyska M, Rosenfeld A (1997) Curve detection in a noisy image. Vision Res 37 (9), 1217–1241

    Article  Google Scholar 

  • Prazdny K (1984) On the perception of Glass patterns. Perception 13, 469–478

    Article  Google Scholar 

  • Schmidt RC, Shaw BK, Turvey MT (1993) Coupling dynamics in interlimb coordination. J Exp Psychol Human 19, 397–415

    Article  Google Scholar 

  • Schöner G (1990) A dynamic theory of coordination of discrete movement. Biol Cybern 63, 257–270

    Article  Google Scholar 

  • Smits JT, Vos PG (1987) The perception of continuous curves in dot stimuli. Perception 16, 121–131

    Article  Google Scholar 

  • Spelke ES (1990) Principles of object perception. Cognitive Sci 14, 29–56

    Article  Google Scholar 

  • Sternad D, Dean WJ, Schaal S (2000) Interaction of rhythmic and discrete pattern generators in single joint movements. Hum Movement Sci 19, 627–664

    Article  Google Scholar 

  • Stein BE, Meredith MA (1993) The Merging of the Senses. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Stevens KA (1978) Computation of locally parallel structure. Biol Cybern 29, 19–28

    Article  MATH  Google Scholar 

  • Swinnen SP (2002) Intermanual Coordination: From behavioural principles to neural-network interactions. Nat Rev Neurosci 3, 350–361

    Article  Google Scholar 

  • Turvey MT (2003) Impredicativity, Dynamics, and the Perception-Action Divide. This volume

    Google Scholar 

  • Van Noorden LPAS (1975) Temporal Coherence in the Perception of Tone Sequences. Unpublished doctoral dissertation, Eindhoven University of Technology

    Google Scholar 

  • Wertheimer M (1924) Gestalt theory. Social Research 11 translation of lecture at the Kant Society, Berlin, 1924

    Google Scholar 

  • Zucker SW (1985) Early orientation selection: Tangent fields and the dimensionality of their support. Comput Vision Graph 32, 74–103

    Article  Google Scholar 

  • Zucker SW, Stevens KA, Sander P (1983), The relation between proximity and brightness similarity in dot patterns. Percept Psychophys 34, 513–522

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jirsa, V.K., Kelso, J.A.S. (2004). Integration and Segregation of Perceptual and Motor Behavior. In: Jirsa, V.K., Kelso, J.A.S. (eds) Coordination Dynamics: Issues and Trends. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39676-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39676-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05790-8

  • Online ISBN: 978-3-540-39676-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics