Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Brains are large-scale networks consisting of millions of neuronal elements that are interconnected in characteristic patterns. These patterns of anatomical connections are critical for determining which neurons and brain areas can functionally interact. The activation of interconnected neuronal populations gives rise to global dynamical states that are associated with perception and cognition (Bressler, 1995; Frackowiak et al., 1997; Tononi and Edelman, 1998; Mesulam, 1998; McIntosh, 1999; Varela et al., 2001; Jirsa and Kelso, 2003; Ward; 2003). Given the importance of anatomical connections for generating structured neuronal dynamics, we need a deeper understanding of how anatomical connectivity and neuronal dynamics are interrelated. This chapter provides a brief overview of current concepts and models of how structured brain connectivity gives rise to complex neural dynamics. Our discussion will focus on recent results and simulations of the mammalian cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74, 47 - 97

    Article  MathSciNet  MATH  Google Scholar 

  • Bressler SL, Coppola R, Nakamura R (1993) Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366, 153 - 156

    Article  Google Scholar 

  • Bressler SL (1995) Large-scale cortical networks and cognition. Brain Res Rev 20, 288 - 304

    Article  Google Scholar 

  • Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5, 26 - 36

    Article  Google Scholar 

  • deCharms RC, Zador A (2000) Neural representation and the cortical code. Annu Rev Neurosci 23, 613 - 647

    Article  Google Scholar 

  • Ding M, Bressler SL, Yang W, Liang H (2000) Short window spectral analysis of cortical event-related potentials by Adaptive MultiVariate AutoRegressive ( AMVAR) modeling: Data preprocessing, model validation, and variability assessment by bootstrapping. Biol Cybern 83, 35-45

    Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1, 1 - 47

    Article  Google Scholar 

  • Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, and Mazziotta JC (1997) Human Brain Function. Academic Press, San Diego, CA

    Google Scholar 

  • Friston KJ (1994) Functional and effective connectivity in neuroimaging: A synthesis. Hum Brain Mapp 2, 56 - 78

    Article  Google Scholar 

  • Friston KJ, Tononi G, Sporns O, Edelman GM (1995) Characterizing the complexity of neural interactions. Hum Brain Mapp3, 302 - 314

    Google Scholar 

  • Friston KJ (1997) Imaging cognitive anatomy. Trends Cogn Sci 1, 21 - 27

    Article  Google Scholar 

  • Friston KJ (1997) Transients, metastability, and neuronal dynamics.Neuroimage 5, 164 - 171

    Google Scholar 

  • Friston KJ (2000) The labile brain. I. Neuronal transients and nonlinear coupling. P Roy Soc Lond B Bio 355, 215 - 236

    Article  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18, 555 - 586

    Article  Google Scholar 

  • Hilgetag CC, Burns GAPC, O'Neill MA, Scannell JW, Young MP (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos T Roy Soc B 355, 91 - 110

    Article  Google Scholar 

  • Jirsa VK, Kelso JAS (2000) Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. Phys Rev E 62, 8462 - 8465

    Article  Google Scholar 

  • Jirsa VK, Kelso JAS (2003) Integration and segregation of perceptual and motor behavior. This volume

    Google Scholar 

  • Jones DS (1979) Elementary Information Theory. Clarendon Press, Oxford, UK Kelso JAS ( 1995 ) Dynamic Patterns. MIT Press, Cambridge, MA

    Google Scholar 

  • Kötter R (2001) Neuroscience databases: Tools for exploring brain structure-function relationships. Philo T Roy Soc B 356, 1111 - 1120

    Article  Google Scholar 

  • Kötter R (2002) Neuroscience Databases. A Practical Guide. Kluwer Academic Publishers, Boston, MA

    Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87, 198701

    Google Scholar 

  • McIntosh AR, Nyberg L, Bookstein FL, Tulving E (1997) Differential functional connectivity of prefrontal and medial temporal cortices during episodic memory retrieval. Hum Brain Mapp 5, 323 - 327

    Article  Google Scholar 

  • McIntosh AR (1999) Mapping cognition to the brain through neural interactions. Memory 7, 523 - 548

    Article  Google Scholar 

  • McIntosh AR, Rajah MN, and Lobaugh, NJ (1999) Interactions of prefrontal cortex related to awareness in sensory learning. Science 284, 1531 - 1533

    Article  Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Brain 121, 1013 - 1052

    Article  Google Scholar 

  • Roelfsema PR, Engel AK, König P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157 - 161

    Article  Google Scholar 

  • Scannell JW, Burns GAPC, Hilgetag CC, O'Neil MA, Young MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9, 277 - 299

    Article  Google Scholar 

  • Young MP (1993)The organization of neural systems in the primate cerebral cortex. P Roy Soc Lond B Bio 252, 13-18

    Google Scholar 

  • Sporns O, Tononi G, Edelman GM (1991) Modeling perceptual grouping and Figure-ground segregation by means of active reentrant circuits. P Natl Acad Sci USA 88, 129 - 133

    Article  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2000a) Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10, 127-141

    Google Scholar 

  • Sporns O, Tononi G, Edelman G (2000b) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Networks 13, 909 - 922

    Article  Google Scholar 

  • Sporns O, Tononi G (2002) Classes of network connectivity and dynamics.Complexity 7, 28-3 8

    Google Scholar 

  • Sporns 0 (2002) Graph theory methods for the analysis of neural connection patterns. In: Kötter R (ed.) Neuroscience Databases. A Practical Guide. Kluwer, Boston, MA, 169 - 183

    Google Scholar 

  • Srinivasan R, Russell DP, Edelman GM, Tononi G (1999) Increased Synchronization of Neuromagnetic Responses during Conscious Perception. J Neurosci 19, 5435 - 5448

    Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410, 268 - 277

    Article  Google Scholar 

  • Tononi G, Edelman GM, Sporns 0 (1998) Complexity and coherency: Integrating information in the brain. Trends Cogn Sci 2, 474-484

    Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: Relating functional segregation and integration in the nervous system. P Natl Acad Sci USA 91, 5033-5037

    Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: Phase synchronization and large-scale integration. Nat Rev Neurosci 2, 229-239

    Google Scholar 

  • von Stein A, Rappelsberger P, Sarnthein J, Petsche H (1999)Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb Cortex 9, 137 - 150

    Google Scholar 

  • Ward LM (2003) Oscillations and synchrony in cognition. This volume

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world’ networks. Nature 393, 440 – 442

    Article  Google Scholar 

  • Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55 - 80

    Article  Google Scholar 

  • Young MP (1993) The organization of neural systems in the primate cerebral cortex. P Rox Soc Lond B Bio 252, 13–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sporns, O. (2004). Complex Neural Dynamics. In: Jirsa, V.K., Kelso, J.A.S. (eds) Coordination Dynamics: Issues and Trends. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39676-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39676-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05790-8

  • Online ISBN: 978-3-540-39676-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics