Skip to main content

Rydberg Atoms and the Test of Simple Quantum Electrodynamical Effects

  • Conference paper
Laser Spectroscopy VII

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 49))

  • 303 Accesses

Abstract

Rydberg Atoms represent an ideal testing ground for some of the most fundamental models and predictions of low-energy quantum electrodynamics (QED). The following are reasons and examples:

  1. (a)

    The matrix elements for electric dipole transitions between neighbouring Rydberg states scale as n2, where n is the principal quantum number. For high enough n, stimulated effects overcome spontaneous emission already for very small photon numbers. As a consequence, Rydberg atoms are very sensitive e.g. to blackbody radiation (see Ref. [1] and [2] for recent reviews).

  2. (b)

    The transitions to neighbouring levels are in the region of millimeter waves, therefore it is possible to physically modify the nature of the environment into which they decay, using for example conducting walls. Introducing conductors imposes boundary conditions on the electromagnetic field, and leads back to a descrete spectrum in the case of a finite volume enclosed in a cavity. In principle, there are essentially two distinct cases to be discussed. First, the situation of an atom in close proximity to a conducting plate [3–8]. The induced image charges give rise to extra contributions of a van der Waals-type force to the inner atomic forces, thus leading to position-dependent level shifts. Second, there are effects from a discrete mode structure of the electromagnetic field inside a cavity. due to its geometry. Of course, it is not possible to consider one of these phenomena without the other, but in most cases only one of the two produces the major influence. Consequences of the discrete mode structure of a cavity for Rydberg atoms are: the rate of the spontaneous emission is enhanced or diminished,depending upon the cavity being tuned on or off resonance with a transition frequency [9–13], as well as modifying the Lamb shift of Rydberg levels [14].

  3. (c)

    For cavities with high quality factors, the photon emitted by an atom in a Rydberg state remains stored inside the resonator long enough to be reabsorbed by the same atom with a finite probability. In this way, it is possible to realize a single-atom maser [15]. A single Rydberg atom inside a low-loss, single-mode resonator is an experimental realization of the Jaynes-Cummings model [16], describing the interaction between a single two-level atom and a single mode of the electromagnetic field. This model has been the object of considerable attention in the past, and a number of purely quantum mechanical predictions on the dynamics of this system have been made. These include the collapses and revivals in the dynamics of the atomic population. Rydberg atoms will for the first time offer the possibility to test these predictions [16–18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Haroche, J.M. Raimond: Advances Atomic and Molecular Physics, Vol. 20, Eds. D. Bates and B. Bederson, pp. 350–411 ( Academic Press, New York 1985 ).

    Google Scholar 

  2. J.A. Gallas, G. Leuchs, H. Walther, H. Figger: Advances in Atomic and Molecular Physics, Vol. 20, Eds. D. Bates and B. Bederson, pp. 413–466 ( Academic Press, New York 1985 ).

    Google Scholar 

  3. V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii: “Quantum Electrodynamics” ( Pergamon Press, Oxford 1982 )

    Google Scholar 

  4. G. Barton: Proc. Roy. Soc. London A320, 251 (1970)

    Article  ADS  Google Scholar 

  5. P. Stehle: Phys. Rev. A2, 102 (1970)

    Article  ADS  Google Scholar 

  6. K.H. Drexhage: Progress in Optics, Vol. 12, Ed. by E. Wolf ( North Holland, Amsterdam 1974 )

    Google Scholar 

  7. P.W. Milonni, and P.L. Knight: Opt. Commun. 9, 119 (1973)

    Article  ADS  Google Scholar 

  8. E.A. Power, and T. Thirunamachandran: Phys. Rev. A25, 2473 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  9. E.M. Purcell: Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  10. D. Kleppner: Phys. Rev. Lett. 47, 233 (1981)

    Article  ADS  Google Scholar 

  11. A.G. Vaidyanthan, W.P. Spencer, and D. Kleppner: Phys. Rev. Lett. 47, 1592 (1981)

    Article  ADS  Google Scholar 

  12. G. Gabrielse, H. Dehmelt (to be published);

    Google Scholar 

  13. G. Gabrielse, R. Dyck, J. Schwinberg, H. Dehmelt: Bull. Ann. Phys. Soc. 29, 926 (1984)

    Google Scholar 

  14. P. Goy, J.D. Raimond, M. Gross, S. Haroche: Phys. Rev. Lett. 50, 1903 (1983)

    Article  ADS  Google Scholar 

  15. P. Dobiasch, and H. Walther: Annales No6 - Alfred Kastler Symposium (Editions de Physique 1985 ) in print

    Google Scholar 

  16. D. Meschede, H. Walther, G. Müller: Phys. Rev. Lett. 54, 551 (1985)

    Article  ADS  Google Scholar 

  17. E.T. Jaynes, and F.W. Cummings: Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  18. P. Meystre: PhD Thesis, Ecole Polytechnique Fédéderale Lausanne (1974);

    Google Scholar 

  19. P. Meystre, E. Geneux, A. Quattropani, A. Faist, Nuovo Cimento 25B, 521 (1975)

    Article  Google Scholar 

  20. J.H. Eberly, N.B. Narozhny, J.J. Sanchez-Mondragon: Phys. Rev. Lett. 44, 1323 (1980), and references therein

    Google Scholar 

  21. G. Rempe, G. Babst, H. Walther, N. Klein: publication in preparation

    Google Scholar 

  22. T. von Foerster: J. Phys. A8, 95 (1975)

    ADS  Google Scholar 

  23. S. Stenholm: Phys. Rep. 6, 1 (1975)

    Article  ADS  Google Scholar 

  24. P.L. Knight, and P.W. Milonni: Phys. Rev. C66, 21 (1980)

    MathSciNet  Google Scholar 

  25. P. Filipowicz, J. Javanainen, P. Meystre, to be published

    Google Scholar 

  26. P. Filipowicz, P. Meystre, G. Rempe, H. Walther: Optica Acta (1985), in print

    Google Scholar 

  27. E. Fischbach, and N. Nakagawa: Phys. Lett. 149B, 504 (1984)

    Google Scholar 

  28. E. Ledinegg, Acta Phys. Austr. 51, 85 (1979)

    Google Scholar 

  29. N.F. Ramsey: Phys. Rev. 76, 996 (1949)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dobiasch, P., Rempe, G., Walther, H. (1985). Rydberg Atoms and the Test of Simple Quantum Electrodynamical Effects. In: Hänsch, T.W., Shen, Y.R. (eds) Laser Spectroscopy VII. Springer Series in Optical Sciences, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39664-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39664-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-15253-9

  • Online ISBN: 978-3-540-39664-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics