From Co-algebraic Specifications to Implementation: The Mihda Toolkit

  • Gianluigi Ferrari
  • Ugo Montanari
  • Roberto Raggi
  • Emilio Tuosto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2852)


This paper describes the architecture of a toolkit, called Mihda, providing facilities to minimize labelled transition systems for name passing calculi. The structure of the toolkit is derived from the co-algebraic formulation of the partition-refinement minimization algorithm for HD-automata. HD-automata have been specifically designed to allocate and garbage collect names and they provide faithful finite state representations of the behaviours of π-calculus processes. The direct correspondence between the coalgebraic specification and the implementation structure facilitates the proof of correctness of the implementation. We evaluate the usefulness of Mihda in practice by performing finite state verification of π-calculus specifications.


Transition System Destination State Permutation Group Source State Input Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aczel, P.: Algebras and coalgebras. In: Blackhouse, R., Crole, R.L., Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathematics of Program Construction. LNCS, vol. 2297, pp. 79–88. Springer, Heidelberg (2002); Revised Lectures of the Int. Summer School and WorkshopCrossRefGoogle Scholar
  2. 2.
    Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions. ACM Computing Surveys 28(4), 626–643 (1996)CrossRefGoogle Scholar
  3. 3.
    Fernandez, J.C.: An implementation of an efficient algorithm for bisimulation equivalence. Science of Computer Programming 13, 219–236 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ferrari, G., Montanari, U., Pistore, M.: Minimizing transition systems for name passing calculi: A co-algebraic formulation. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 129–143. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Fiore, M., Plotkin, G.G., Turi, D.: Abstract syntax and variable binding. In: 14th Annual Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  6. 6.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders. In: 14th Annual Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  7. 7.
    Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bulletin of the EATCS 62, 222–259 (1996)Google Scholar
  8. 8.
    Kanellakis, P.C., Smolka, S.A.: Ccs expressions, finite state processes and three problem of equivalence. Information and Computation 86(1), 272–302 (1990)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Milner, R.: Commuticating and Mobile Systems: the π-calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  10. 10.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Information and Computation 100(1), 1–40, 41–77 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Montanari, U., Pistore, M.: History dependent automata. Technical report, Computer Science Department, Università di Pisa, TR-11-98 (1998)Google Scholar
  12. 12.
    Montanari, U., Pistore, M.: π-calculus, structured coalgebras and minimal hd-automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, p. 569. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Orava, F., Parrow, J.: An algebraic verification of a mobile network. Formal Aspects of Computing 4(5), 497–543 (1992)zbMATHCrossRefGoogle Scholar
  14. 14.
    Pistore, M.: History dependent automata. PhD thesis, Computer Science Department, Università di Pisa (1999)Google Scholar
  15. 15.
    Pitts, A.M., Gabbay, M.J.: A metalanguage for programming with bound names modulo renaming. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2002)Google Scholar
  17. 17.
    Victor, B., Moller, F.: The Mobility Workbench — a tool for the π- calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Gianluigi Ferrari
    • 1
  • Ugo Montanari
    • 1
  • Roberto Raggi
    • 1
  • Emilio Tuosto
    • 1
  1. 1.Dipartimento di InformaticaUniversitá di PisaItaly

Personalised recommendations