Skip to main content

On the Existence and Convergence of Computable Universal Priors

  • Conference paper
Algorithmic Learning Theory (ALT 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2842))

Included in the following conference series:

Abstract

Solomonoff unified Occam’s razor and Epicurus’ principle of multiple explanations to one elegant, formal, universal theory of inductive inference, which initiated the field of algorithmic information theory. His central result is that the posterior of his universal semimeasure M converges rapidly to the true sequence generating posterior μ, if the latter is computable. Hence, M is eligible as a universal predictor in case of unknown μ. We investigate the existence and convergence of computable universal (semi)measures for a hierarchy of computability classes: finitely computable, estimable, enumerable, and approximable. For instance, M is known to be enumerable, but not finitely computable, and to dominate all enumerable semimeasures. We define seven classes of (semi)measures based on these four computability concepts. Each class may or may not contain a (semi)measure which dominates all elements of another class. The analysis of these 49 cases can be reduced to four basic cases, two of them being new. We also investigate more closely the types of convergence, possibly implied by universality: in difference and in ratio, with probability 1, in mean sum, and for Martin-Löf random sequences. We introduce a generalized concept of randomness for individual sequences and use it to exhibit difficulties regarding these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doob, J.L.: Stochastic Processes. John Wiley & Sons, New York (1953)

    MATH  Google Scholar 

  2. Hutter, M.: Convergence and error bounds of universal prediction for general alphabet. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 239–250. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Hutter, M.: Sequence prediction based on monotone complexity. In: Proceedings of the 16th Conference on Computational Learning Theory, COLT 2003 (2003)

    Google Scholar 

  4. van Lambalgen, M.: Random Sequences. PhD thesis, Univ. Amsterdam (1987)

    Google Scholar 

  5. Levin, L.A.: On the notion of a random sequence. Soviet Math. Dokl. 14(5), 1413–1416 (1973)

    MATH  Google Scholar 

  6. Li, M., Vitányi, P.M.B.: An introduction to Kolmogorov complexity and its applications, 2nd edn. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  7. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Springer, Berlin (1971)

    MATH  Google Scholar 

  8. Schmidhuber, J.: Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. Journal of Foundations of Computer Science 13(4), 587–612 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Solomonoff, R.J.: A formal theory of inductive inference: Part 1 and 2. Inform. Control 7, 1-22, 224–254 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  10. Solomonoff, R.J.: Complexity-based induction systems: comparisons and convergence theorems. IEEE Trans. Inform. Theory IT-24, 422–432 (1978)

    Article  MathSciNet  Google Scholar 

  11. Vitányi, P.M.B., Li, M.: Minimum description length induction, Bayesianism, and Kolmogorov complexity. IEEE Transactions on Information Theory 46(2), 446–464 (2000)

    Article  MATH  Google Scholar 

  12. Vovk, V.G.: On a randomness criterion. Soviet Mathematics Doklady 35(3), 656–660 (1987)

    MATH  MathSciNet  Google Scholar 

  13. Wang, Y.: Randomness and Complexity. PhD thesis, Univ. Heidelberg (1996)

    Google Scholar 

  14. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys 25(6), 83–124 (1970)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hutter, M. (2003). On the Existence and Convergence of Computable Universal Priors. In: Gavaldá, R., Jantke, K.P., Takimoto, E. (eds) Algorithmic Learning Theory. ALT 2003. Lecture Notes in Computer Science(), vol 2842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39624-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39624-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20291-2

  • Online ISBN: 978-3-540-39624-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics