Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. UNOS Annual Report of the US Scientific Registry of Transplant Recipients and the Organ Procurement and Transplantation Network (2006) http://www.unos.org

    Google Scholar 

  2. Korytkowski M, Bell D, Jacobsen C, Suwannasari R, Team FS (2003) A multicenter, randomized, open-label, comparative, two-period crossover trial of preference, efficacy, and safety profiles of a prefilled, disposable pen and conventional vial/syringe for insulin injection in patients with type 1 or 2 diabetes mellitus. Clin Ther 25:2836–2848

    Article  PubMed  CAS  Google Scholar 

  3. Hermansen K, Ronnemaa T, Petersen AH, Bellaire S, Adamson U (2004) Intensive therapy with inhaled insulin via the AERx insulin diabetes management system: a 12-week proof-of-concept trial in patients with type 2 diabetes. Diabetes Care 27:162–167

    Article  PubMed  CAS  Google Scholar 

  4. Hench LL, Ethridge EC (1982) Biomaterials: an interfacial approach. Academic Press, New York

    Google Scholar 

  5. Ikonomidis JS, Kratz JM, Crumbley A Jr, Stroud MR, Bradley SM, Sade RM, Crawford FAJ (2003) Twenty-year experience with the St Jude Medical mechanical valve prosthesis. J Thorac Cardiovasc Surg 126:2022–2031

    Article  PubMed  Google Scholar 

  6. Jacobs JJ, Hallab NJ, Skipor AK, Urban RM (2003) Metal degradation products: a cause for concern in metal-metal bearings? Clin Orthop 417:139–147

    PubMed  Google Scholar 

  7. Sagnella S, Kligman F, Marchant RE, Kottke-Marchant K (2003) Biometric surfactant polymers designed for shearstable endothelialization on biomaterials. J Biomed Mater Res 67A:689–701

    Article  CAS  Google Scholar 

  8. Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585

    Article  PubMed  CAS  Google Scholar 

  9. Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364

    Article  PubMed  CAS  Google Scholar 

  10. Kouchoukos NT, Karp RB, Oberman A, Russell ROJ, Alison HW, Holt JHJ (1978) Long-term patency of saphenous veins for coronary bypass grafting. Circulation 58: I96–I99

    PubMed  CAS  Google Scholar 

  11. Chapelier AR, Missana MC, Couturaud B, Fadel E, Fabre D, Mussot S, Pouillart P, Dartevelle PG (2004) Sternal resection and reconstruction for primary malignant tumors. Ann Thorac Surg 77:1001–1006; discussion, 1006–1007

    Article  PubMed  Google Scholar 

  12. Klinkert P, Post PP, Breslau PP, Van Bockel JJ (2004) Saphenous vein versus PTFE for above-knee femoropopliteal bypass: a review of the literature. Eur J Vasc Endovasc Surg 27:357–362

    Article  PubMed  CAS  Google Scholar 

  13. Yamamoto Y, Kawashima K, Sugihara T, Nohira K, Furuta Y, Fukuda S (2004) Surgical management of maxillectomy defects based on the concept of buttress reconstruction. Head Neck 26:247–256

    Article  PubMed  Google Scholar 

  14. Mont MA, Etienne G, Ragland PS (2003) Outcome of nonvascularized bone grafting for osteonecrosis of the femoral head. Clin Orthop 417:84–92

    PubMed  Google Scholar 

  15. Zirm EK (1989) Eine erfolgreiche totale Keratoplastik [A successful total keratoplasty]. 1906. Refract Corneal Surg 5:258–261

    PubMed  CAS  Google Scholar 

  16. Murray JE, Merrill JP, Harrison JH (1955) Renal homotransplantation in identical twins. Surg Forum 6:432–436

    Google Scholar 

  17. Starzl TE (2001) The birth of clinical organ transplantation. J Am Coll Surg 192:431–446

    Article  PubMed  CAS  Google Scholar 

  18. Starzl TE (2003) Organ transplantation: a practical triumph and epistemologic collapse. Proc Am Philos Soc 147:226–245

    PubMed  Google Scholar 

  19. Cecka JM, Terasaki PI (2001) Clinical transplants. UCLA Immunogenetics Center, Los Angeles

    Google Scholar 

  20. Patel JK, Kobashigawa JA (2004) Cardiac transplant experience with cyclosporine. Transplant Proc 36:S323–S330

    Article  CAS  Google Scholar 

  21. Zuckermann A, Klepetko W (2004) Use of cyclosporine in thoracic transplantation. Transplant Proc 36:S331–S336

    Article  CAS  Google Scholar 

  22. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  23. Mito M, Ebata H, Kusano M, Onishi T, Saito T, Sakamoto S (1979) Morphology and function of isolated hepatocytes transplanted into rat spleen. Transplantation 28:499–505

    Article  PubMed  CAS  Google Scholar 

  24. Kodama S, Kuhtreiber W, Fujimura S, Dale EA, Faustman DL (2003) Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 302:1223–1227

    Article  PubMed  CAS  Google Scholar 

  25. Nagata H, Ito M, Shirota C, Edge A, McCowan TC, Fox IJ (2003) Route of hepatocyte delivery affects hepatocyte engraftment in the spleen. Transplantation 76:732–734

    Article  PubMed  Google Scholar 

  26. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  PubMed  CAS  Google Scholar 

  27. Penn MS, Francis GS, Ellis SG, Young JB, McCarthy PM, Topol EJ (2002) Autologous cell transplantation for the treatment of damaged myocardium. Prog Cardiovasc Dis 45:21–32

    Article  PubMed  Google Scholar 

  28. Peron JM, Couderc B, Rochaix P, Douin-Echinard V, Asnacios A, Souque A, Voigt JJ, Buscail L, Vinel JP, Favre G (2004) Treatment of murine hepatocellular carcinoma using genetically modified cells to express interleukin-12. J Gastroenterol Hepatol 19:388–396

    Article  PubMed  CAS  Google Scholar 

  29. Roth JA, Grammer SF (2004) Gene replacement therapy for non-small cell lung cancer: a review. Hematol Oncol Clin North Am 18:215–229

    Article  PubMed  Google Scholar 

  30. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    Article  PubMed  CAS  Google Scholar 

  31. Barron V, Lyons E, Stenson-Cox C, McHugh PE, Pandit A (2003) Bioreactors for cardiovascular cell and tissue growth: a review. Ann Biomed Eng 31:1017–1030

    Article  PubMed  CAS  Google Scholar 

  32. Dutt K, Harris-Hooker S, Ellerson DL, Kumar R, Hunt R (2003) Generation of 3D retina-like structures from a human retinal cell line in a NASA bioreactor. Cell Transplant 12:717–731

    PubMed  Google Scholar 

  33. Vunjak-Novakovic G (2003) The fundamentals of tissue engineering: scaffolds and bioreactors. Novartis Found Symp 249:34–46

    Article  PubMed  CAS  Google Scholar 

  34. Hall CW, Liotta D, De Bakey ME (1966) Artificial skin. Trans Am Soc Artif Intern Organs 12:340–345

    PubMed  CAS  Google Scholar 

  35. Wright KA, Nadire KB, Busto P, Tubo R, McPherson JM, Wentworth BM (1998) Alternative delivery of keratinocytes using a polyurethane membrane and the implications for its use in the treatment of full-thickness burn injury. Burns 24:7–17

    Article  PubMed  CAS  Google Scholar 

  36. Carsin H, Ainaud P, Le Bever H, Rives J, Lakhel A, Stephanazzi J, Lambert F, Perrot J (2000) Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns 26:379–387

    Article  PubMed  CAS  Google Scholar 

  37. Eaglstein WH (1998) Dermagraft treatment of diabetic ulcers. J Dermatol 25:803–804

    PubMed  CAS  Google Scholar 

  38. Marston WA, Hanft J, Norwood P, Pollak R, Group DDFUS (2003) The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26:1701–1705

    Article  PubMed  Google Scholar 

  39. Fivenson D, Scherschun L (2003) Clinical and economic impact of Apligraf for the treatment of nonhealing venous leg ulcers. Int J Dermatol 42:960–965

    Article  PubMed  CAS  Google Scholar 

  40. Bannasch H, Fohn M, Unterberg T, Bach AD, Weyand B, Stark GB (2003) Skin tissue engineering. Clin Plast Surg 30:573–579

    Article  PubMed  CAS  Google Scholar 

  41. Vacanti CA, Langer R, Schloo B, Vacanti JP (1991) Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg 88:753–759

    Article  PubMed  CAS  Google Scholar 

  42. Kim WS, Vacanti JP, Cima L, Mooney D, Upton J, Puelacher WC, Vacanti CA (1994) Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plast Reconstr Surg 94:233–237

    Article  PubMed  CAS  Google Scholar 

  43. Kim WS, Vacanti CA, Upton J, Vacanti JP (1994) Bone defect repair with tissue-engineered cartilage. Plast Reconstr Surg 94:580–584

    Article  PubMed  CAS  Google Scholar 

  44. Vacanti CA, Kim WS, Schloo B, Upton J, Vacanti JP (1994) Joint resurfacing with cartilage grown in situ from cell-polymer structures. Am J Sports Med 22:485–488

    Article  PubMed  CAS  Google Scholar 

  45. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  PubMed  CAS  Google Scholar 

  46. Puelacher WC, Mooney D, Langer R, Upton J, Vacanti JP, Vacanti CA (1994) Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes. Biomaterials 15:774–778

    Article  PubMed  CAS  Google Scholar 

  47. Puelacher WC, Wisser J, Vacanti CA, Ferraro NF, Jaramillo D, Vacanti JP (1994) Temporomandibular joint disc replacement made by tissue-engineered growth of cartilage. J Oral Maxillofac Surg 52:1172–1177

    PubMed  CAS  Google Scholar 

  48. Vacanti CA, Cima LG, Ratkowski D, Upton J, Vacanti JP (1992) Tissue engineered growth of new cartilage in the shape of a human ear using synthetic polymers seeded with chondrocytes. Mater Res Soc Symp Proc 252:36–374

    Google Scholar 

  49. Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA (1997) Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 100:297–302

    Article  PubMed  CAS  Google Scholar 

  50. Sakata J, Vacanti CA, Schloo B, Healy GB, Langer R, Vacanti JP (1994) Tracheal composites tissue engineered from chondrocytes, tracheal epithelial cells, and synthetic degradable scaffolding. Transplant Proc 26:2209–2210

    Google Scholar 

  51. Vacanti CA, Paige KT, Kim WS, Sakata J, Upton J, Vacanti JP (1994) Experimental tracheal replacement using tissueengineered cartilage. J Pediatr Surg 29:201–204

    Article  PubMed  CAS  Google Scholar 

  52. Kojima K, Bonassar LJ, Roy AK, Vacanti CA, Cortiella J (2002) Autologous tissue-engineered trachea with sheep nasal chondrocytes. J Thorac Cardiovasc Surg 123:1177–1184

    Article  PubMed  Google Scholar 

  53. Kojima K, Bonassar LJ, Roy AK, Mizuno H, Cortiella J, Vacanti CA (2003) A composite tissue-engineered trachea using sheep nasal chondrocyte and epithelial cells. FASEB J 17:823–828

    Article  PubMed  CAS  Google Scholar 

  54. Kojima K, Bonassar LJ, Ignotz RA, Syed K, Cortiella J, Vacanti CA (2003) Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea. Ann Thorac Surg 76:1884–1888

    Article  PubMed  Google Scholar 

  55. Rotter N, Bonassar LJ, Tobias G, Lebl M, Roy AK, Vacanti CA (2001) Age dependence of cellular properties of human septal cartilage: implications for tissue engineering. Arch Otolaryngol Head Neck Surg 127:1248–1252

    PubMed  CAS  Google Scholar 

  56. Fuchs JR, Terada S, Hannouche D, Ochoa ER, Vacanti JP, Fauza DO (2003) Engineered fetal cartilage: structural and functional analysis in vitro. J Pediatr Surg 37:1720–1725

    Article  Google Scholar 

  57. Pei M, Solchaga LA, Seidel J, Zeng L, Vunjak-Novakovic G, Caplan AI, Freed LE (2002) Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J 16:1691–1694

    PubMed  CAS  Google Scholar 

  58. Park S, Hung CT, Ateshian GA (2004) Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthritis Cartilage 12:65–73

    Article  PubMed  CAS  Google Scholar 

  59. Fauza DO, Marler JJ, Koka R, Forse RA, Mayer JE, Vacanti JP (2001) Fetal tissue engineering: diaphragmatic replacement. J Pediatr Surg 36:146–151

    Article  PubMed  CAS  Google Scholar 

  60. Fuchs JR, Terada S, Ochoa ER, Vacanti JP, Fauza DO (2002) Fetal tissue engineering: in utero tracheal augmentation in an ovine model. J Pediatr Surg 37:1000–1006

    Article  PubMed  Google Scholar 

  61. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R (1999) Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 104:1014–1022

    Article  PubMed  CAS  Google Scholar 

  62. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314

    Article  PubMed  CAS  Google Scholar 

  63. Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J (2003) In vitro chondrogenesis of bone marrowderived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 9:679–688

    Article  PubMed  CAS  Google Scholar 

  64. Bauer TW, Togawa D (2003) Bone graft substitutes: towards a more perfect union. Orthopedics 26:925–926

    PubMed  Google Scholar 

  65. Chapman MW, Bucholz R, Cornell C (1997) Treatment of acute fractures with a collagen-calcium phosphate graft material: a randomized clinical trial. J Bone Joint Surg Am 79:495–502

    PubMed  CAS  Google Scholar 

  66. Irwin RB, Bernhard M, Biddinger A (2001) Coralline hydroxyapatite as bone substitute in orthopedic oncology. Am J Orthop 30:544–550

    PubMed  CAS  Google Scholar 

  67. Buchholz RW (2002) Nonallograft osteoconductive bone graft substitutes. Clin Orthop 395:44–52

    Article  Google Scholar 

  68. Puelacher WC, Vacanti JP, Ferraro NF, Schloo B, Vacanti CA (1996) Femoral shaft reconstruction using tissueengineered growth of bone. Int J Oral Maxillofac Surg 25:223–228

    Article  PubMed  CAS  Google Scholar 

  69. Isogai N, Landis WJ, Kim TH, Gerstenfeld LC, Upton J, Vacanti JP (1999) Formation of phalanges and small joints by tissue-engineering. J Bone Joint Surg Am 81:306–316

    Article  PubMed  CAS  Google Scholar 

  70. Isogai N, Landis WJ, Mori R, Gotoh Y, Gerstenfeld LC, Upton J, Vacanti JP (2000) Experimental use of fibrin glue to induce site-directed osteogenesis from cultured periosteal cells. Plast Reconstr Surg 105:953–963

    Article  PubMed  CAS  Google Scholar 

  71. Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J (2001) Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 344:1511–1514

    Article  PubMed  CAS  Google Scholar 

  72. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 8:641–650

    Article  Google Scholar 

  73. Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294

    Article  PubMed  CAS  Google Scholar 

  74. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  75. Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yazemski MJ, Mikos AG (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36:17–28

    Article  PubMed  CAS  Google Scholar 

  76. Goldstein AS, Zhu G, Morris GE, Meslenyi RK, Mikos AG (1999) Effect of osteoblastic culture conditions on the structure of poly(dl-lactic-co-glycolic acid) foam scaffolds. Tissue Eng 5:421–433

    Article  PubMed  CAS  Google Scholar 

  77. Terai H, Hannouche D, Ochoa E, Yamano Y, Vacanti JP (2002) In vitro engineering of bone using a rotational oxygen-permeable bioreactor system. Mat Sci Eng C 20:3–8

    Article  Google Scholar 

  78. Abukawa H, Terai H, Hannouche D, Vacanti JP, Kaban LB, Troulis MJ (2003) Formation of a mandibular condyle in vitro by tissue engineering. J Oral Maxillofac Surg 61:94–100

    Article  PubMed  Google Scholar 

  79. Nakagawa K, Abukawa H, Shin M, Terai H, Troulis MJ, Vacanti JP (2004) Osteoclastogenesis on tissue-engineered bone. Tissue Eng 10:93–100

    Article  PubMed  CAS  Google Scholar 

  80. Zeltinger J, Sherwood JK, Graham DA, Mueller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572

    Article  PubMed  CAS  Google Scholar 

  81. Yoshimoto H, Shin M, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082

    Article  PubMed  CAS  Google Scholar 

  82. Koegler WS, Griffith LG (2004) Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Biomaterials 15:2819–2830

    Article  CAS  Google Scholar 

  83. Lin CY, Kikuchi N, Hollister SJ (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37:623–636

    Article  PubMed  Google Scholar 

  84. Sikavitsas VI, Bancroft GN, Holtorf HL, Jansen JA, Mikos AG (2003) Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc Natl Acad Sci USA 100:14683–14688

    Article  PubMed  CAS  Google Scholar 

  85. Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L, Kaplan D, Langer R, Vunjak-Novakovic G (2004) Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 32:112–122

    Article  PubMed  Google Scholar 

  86. Caplan AI (2000) Mesenchymal stem cells and gene therapy. Clin Orthop 379:S67–S70

    Article  PubMed  Google Scholar 

  87. Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM, Underwood RA, Song KM, Sussman M, Byers PH, Russell DW (2004) Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303:1198–1201

    Article  PubMed  CAS  Google Scholar 

  88. Thompson JS, Iyer KR, DiBaise JK, Young RL, Brown CR, Langnas AN (2003) Short bowel syndrome and Crohn’s disease. J Gastrointest Surg 7:1069–1072

    Article  PubMed  Google Scholar 

  89. Kaufman SS, Gondolesi GE, Fishbein TM (2003) Parenteral nutrition associated liver disease. Semin Neonatol 8:375–381

    Article  PubMed  Google Scholar 

  90. Vernon AH, Georgeson KE (2001) Surgical options for short bowel syndrome. Semin Pediatr Surg 10:91–98

    Article  PubMed  CAS  Google Scholar 

  91. Carlson GL (2003) Surgical management of intestinal failure. Proc Nutr Soc 62:711–718

    Article  PubMed  CAS  Google Scholar 

  92. Mittal NK, Tzakis AG, Kato T, Thompson JF (2003) Current status of small bowel transplantation in children: update 2003. Pediatr Clin North Am 50:1419–1433

    Article  PubMed  Google Scholar 

  93. Organ GM, Mooney DJ, Hansen LK, Schloo B, Vacanti JP (1992) Transplantation of enterocytes utilizing polymer-cell constructs to produce a neointestine. Transplant Proc 24:3009–3011

    PubMed  CAS  Google Scholar 

  94. Organ GM, Mooney DJ, Hansen LK, Schloo B, Vacanti JP (1993) Enterocyte transplantation using cell-polymer devices to create intestinal epithelial-lined tubes. Transplant Proc 25:998–1001

    PubMed  CAS  Google Scholar 

  95. Choi RS, Vacanti JP (1997) Preliminary studies of tissue-engineered intestine using isolated epithelial organoid units on tubular synthetic biodegradable scaffolds. Transplant Proc 29:848–851

    Article  PubMed  CAS  Google Scholar 

  96. Choi RS, Riegler M, Pothoulakis C, Kim BS, Mooney D, Vacanti M, Vacanti JP (1998) Studies of brush border enzymes, basement membrane components, and electrophysiology of tissue-engineered neointestine. J Pediatr Surg 33:991–996

    Article  PubMed  CAS  Google Scholar 

  97. Kim SS, Kaihara S, Benvenuto MS, Choi RS, Kim BS, Mooney DJ, Taylor GA, Vacanti JP (1999) Regenerative signals for intestinal epithelial organoid units transplanted on biodegradable polymer scaffolds for tissue engineering of small intestine. Transplantation 672:227–233

    Article  Google Scholar 

  98. Kim SS, Kaihara S, Benvenuto MS, Choi RS, Kim BS, Mooney DJ, Taylor GA, Vacanti JP (1999) Regenerative signals for tissue-engineered small intestine. Transplant Proc 31:657–670

    Article  PubMed  CAS  Google Scholar 

  99. Kaihara S, Kim SS, Benvenuto M, Choi RS, Kim BS, Mooney D, Tanaka K, Vacanti JP (1999) Successful anastomosis between tissue-engineered intestine and native small bowel. Transplantation 67:241–245

    Article  PubMed  CAS  Google Scholar 

  100. Kaihara S, Kim SS, Benvenuto M, Choi RS, Kim BS, Mooney D, Tanaka K, Vacanti JP (1999) Anastomosis between tissue-engineered intestine and native small bowel. Transplant Proc 31:661–662

    Article  PubMed  CAS  Google Scholar 

  101. Kaihara S, Kim SS, Benvenuto M, Choi RS, Kim BS, Mooney D, Tanaka K, Vacanti JP (1999) End-to-end anastomosis between tissue-engineered intestine and native small bowel. Tissue Eng 5:339–346

    Article  PubMed  CAS  Google Scholar 

  102. Kim SS, Kaihara S, Benvenuto MS, Choi RS, Kim BS, Mooney DJ, Vacanti JP (1999) Effects of anastomosis of tissue-engineered neointestine to native small bowel. J Surg Res 87:6–13

    Article  PubMed  CAS  Google Scholar 

  103. Kaihara S, Kim SS, Kim BS, Mooney DJ, Tanaka K, Vacanti JP (2000) Long-term follow-up of tissue-engineered intestine after anastomosis to native small bowel. Transplantation 69:1927–1932

    Article  PubMed  CAS  Google Scholar 

  104. Grikscheit TC, Ogilvie JB, Ochoa ER, Alsberg E, Mooney D, Vacanti JP (2003) Tissue-engineered colon exhibits function in vivo. Surgery 132:200–204

    Article  Google Scholar 

  105. Grikscheit TC, Ochoa ER, Ramsanahie A, Alsberg E, Mooney D, Whang EE, Vacanti JP (2003) Tissue-engineered large intestine resembles native colon with appropriate in vitro physiology and architecture. Ann Surg 238:35–41

    Article  PubMed  Google Scholar 

  106. Grikscheit TC, Srinivasan A, Vacanti JP (2003) Tissue-engineered stomach: a preliminary report of a versatile in vivo model with therapeutic potential. J Pediatr Surg 38:1305–1309

    Article  PubMed  Google Scholar 

  107. Maemura T, Shin M, Sato M, Mochizuki H, Vacanti JP (2003) A tissue-engineered stomach as a replacement of the native stomach. Transplantation 576:61–65

    Article  Google Scholar 

  108. Gardner-Thorpe J, Grikscheit TC, Ito H, Perez A, Ashley SW, Vacanti JP, Whang EE (2003) Angiogenesis in tissue-engineered small intestine. Tissue Eng 9:1255–1261

    Article  PubMed  CAS  Google Scholar 

  109. Lamm P, Juchem G, Milz S, Schuffenhauer M, Reichart B (2001) Autologous endothelialized vein allograft: a solution in the search for small-caliber grafts in coronary artery bypass graft operations. Circulation 104:I108–I114

    PubMed  CAS  Google Scholar 

  110. Bos GW, Poot AA, Beugeling T, van Aken WG, Feijen J (1998) Small-diameter vascular graft prostheses: current status. Arch Physiol Biochem 106:100–115

    Article  PubMed  CAS  Google Scholar 

  111. Miwa H, Matsuda T (1994) An integrated approach to the design and engineering of hybrid arterial prostheses. J Vasc Surg 19:658–667

    PubMed  CAS  Google Scholar 

  112. Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400

    Article  PubMed  CAS  Google Scholar 

  113. L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12:47–56

    PubMed  CAS  Google Scholar 

  114. Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO, Sullivan S (1999) Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol 17:1083–1086

    Article  PubMed  CAS  Google Scholar 

  115. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493

    Article  PubMed  CAS  Google Scholar 

  116. Shinoka T, Shum-Tim D, Ma PX, Tanel RE, Isogai N, Langer R, Vacanti JP, Mayer JEJ (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115:536–545

    Article  PubMed  CAS  Google Scholar 

  117. Stock UA, Sakamoto T, Hatsuoka S, Martin DP, Nagashima M, Moran AM, Moses MA, Khalil PN, Schoen FJ, Vacanti JP, Mayer JEJ (2000) Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding. J Thorac Cardiovasc Surg 120:1158–1167

    Article  PubMed  CAS  Google Scholar 

  118. Watanabe M, Shin’oka T, Tohyama S, Hibino N, Konuma T, Matsumura G, Kosaka Y, Ishida T, Imai Y, Yamakawa M, Ikada Y, Morita S (2001) Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng 74:429–439

    Article  Google Scholar 

  119. Shin’oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344:532–533

    Article  CAS  Google Scholar 

  120. Naito Y, Imai Y, Shin’oka T, Kashiwagi J, Aoki M, Watanabe M, Matsumura G, Kosaka Y, Konuma T, Hibino N, Murata A, Miyake T, Kurosawa H (2003) Successful clinical application of tissue-engineered graft for extracardiac Fontan operation. J Thorac Cardiovasc Surg 125:129–130

    Article  Google Scholar 

  121. Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin’oka T (2003) Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 24:2303–2308

    Article  PubMed  CAS  Google Scholar 

  122. Matsumura G, Miyagawa-Tomita S, Shin’oka T, Ikada Y, Kurosawa H (2003) First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108:1729–1734

    Article  PubMed  Google Scholar 

  123. Isomatsu Y, Shinoka T, Matsumura G, Hibino N, Konuma T, Nagatsu M, Kurosawa H (2003) Extracardiac total cavopulmonary connection using a tissue-engineered graft. J Thorac Cardiovasc Surg 126:1958–1962

    Article  PubMed  Google Scholar 

  124. American Liver Foundation (2005) Annual report, 2005. American Liver Foundation, Cedar Grove, N.J.

    Google Scholar 

  125. Starzl TE, Tzakis A, Fung JJ, Todo S, Demetris AJ, Manez R, Marino IR, Valdivia L, Murase N (1994) Prospects of clinical xenotransplantation. Transplant Proc 26:1082–1088

    PubMed  CAS  Google Scholar 

  126. Schmidt HH, Tietge UJ, Manns MP (1997) Perspectives of liver cell transplantation: a review. Hepatogastroenterology 44:1013–1018

    PubMed  CAS  Google Scholar 

  127. Busuttil RW, Goss JA (1999) Split liver transplantation. Ann Surg 229:313–321

    Article  PubMed  CAS  Google Scholar 

  128. Kilic M, Seu P, Stribling RJ, Ghalib R, Goss JA (2001) In situ splitting of the cadaveric liver for two adult recipients. Transplantation 72:1853–1858

    Article  PubMed  CAS  Google Scholar 

  129. Kasahara M, Uryuhara K, Kaihara S, Kozaki K, Fujimoto Y, Ogura Y, Ogawa K, Oike F, Ueda M, Egawa H, Tanaka K (2003) Monosegmental living donor liver transplantation. Transplant Proc 35:1425–1426

    Article  PubMed  CAS  Google Scholar 

  130. Takada Y, Tanaka K (2004) Living related liver transplantation. Transplant Proc 36:271S–273S

    Article  PubMed  CAS  Google Scholar 

  131. Jaffe V, Darby H, Selden C, Hodgson HJ (1988) The growth of transplanted liver cells within the pancreas. Transplantation 45:497–498

    Article  PubMed  CAS  Google Scholar 

  132. Gupta S, Aragona E, Vemuru RP, Bhargava KK, Burk RD, Chowdhury JR (1991) Permanent engraftment and function of hepatocytes delivered to the liver: implications for gene therapy and liver repopulation. Hepatology 14:144–149

    Article  PubMed  CAS  Google Scholar 

  133. Kusano M, Sawa M, Jiang B, Kino S, Itoh K, Sakata H, Katoh K, Mito M (1992) Proliferation and differentiation of fetal liver cells transplanted into rat spleen. Transplant Proc 24:2960–2961

    PubMed  CAS  Google Scholar 

  134. Demetriou AA, Whiting JF, Feldman D, Levenson SM, Chowdhury NR, Moscioni AD, Kram M, Chowdhury JR (1986) Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes. Science 223:1190–1192

    Article  Google Scholar 

  135. Dixit V, Darvasi R, Arthur M, Lewin K, Gitnick G (1993) Cryopreserved microencapsulated hepatocytes—transplantation studies in Gunn rats. Transplantation 55:616–622

    Article  PubMed  CAS  Google Scholar 

  136. Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R (1988) Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg 23:3–9

    Article  PubMed  CAS  Google Scholar 

  137. Johnson LB, Aiken J, Mooney D, Schloo BL, Griffith-Cima L, Langer R, Vacanti JP (1994) The mesentery as a laminated vascular bed for hepatocyte transplantation. Cell Transplant 3:273–281

    PubMed  Google Scholar 

  138. Fontaine M, Schloo B, Jenkins R, Uyama S, Hansen L, Vacanti JP (1995) Human hepatocyte isolation and transplantation into an athymic rat, using prevascularized cell polymer constructs. J Pediatr Surg 30:56–60

    Article  PubMed  CAS  Google Scholar 

  139. Wake MC, Mikos AG, Sarakinos G, Vacanti JP, Langer R (1995) Dynamics of fibrovascular tissue ingrowth in hydrogel foams. Cell Transplant 4:275–279

    Article  PubMed  CAS  Google Scholar 

  140. Kaufmann PM, Sano K, Uyama S, Schloo B, Vacanti JP (1994) Heterotopic hepatocyte transplantation using three-dimensional polymers: evaluation of the stimulatory effects by portacaval shunt or islet cell cotransplantation. Transplant Proc 26:3343–3345

    PubMed  CAS  Google Scholar 

  141. Kaufmann PM, Sano K, Uyama S, Takeda T, Vacanti JP (1994) Heterotopic hepatocyte transplantation: assessing the impact of hepatotrophic stimulation. Transplant Proc 26:2240–2241

    PubMed  CAS  Google Scholar 

  142. Mooney DJ, Kaufmann PM, Sano K, McNamara KM, Vacanti JP, Langer R (1994) Transplantation of hepatocytes using porous, biodegradable sponges. Transplant Proc 26:3425–3426

    PubMed  CAS  Google Scholar 

  143. Sano K, Cusick RA, Lee H, Pollok JM, Kaufmann PM, Uyama S, Mooney D, Langer R, Vacanti JP (1996) Regenerative signals for heterotopic hepatocyte transplantation. Transplant Proc 28:1857–1858

    PubMed  CAS  Google Scholar 

  144. Asonuma K, Gilbert JC, Stein JE, Takeda T, Vacanti JP (1992) Quantitation of transplanted hepatic mass necessary to cure the Gunn rat model of hyperbilirubinemia. Transplant Proc 27:298–301

    CAS  Google Scholar 

  145. Uyama S, Kaufmann PM, Takeda T, Vacanti JP (1993) Delivery of whole liver-equivalent hepatocyte mass using polymer devices and hepatotrophic stimulation. Transplantation 55:932–935

    Article  PubMed  CAS  Google Scholar 

  146. Takeda T, Kim TH, Lee SK, Langer R, Vacanti JP (1995) Hepatocyte transplantation in biodegradable polymer scaffolds using the Dalmatian dog model of hyperuricosuria. Transplant Proc 27:635–636

    PubMed  CAS  Google Scholar 

  147. Takeda T, Murphy S, Uyama S, Organ GM, Schloo BL, Vacanti JP (1995) Hepatocyte transplantation in swine using prevascularized polyvinyl alcohol sponges. Tissue Eng 1:253–262

    Article  CAS  PubMed  Google Scholar 

  148. Takeda T, Vacanti JP (1995) Hepatocyte transplantation in the Dalmatian dog model of hyperuricosuria. Tissue Engineering. Tissue Eng 1:355–360

    Article  CAS  PubMed  Google Scholar 

  149. Lee H, Cusick RA, Browne F, Ho Kim T, Ma PX, Utsunomiya H, Langer R, Vacanti JP (2002) Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices. Transplantation 73:1589–1593

    Article  PubMed  CAS  Google Scholar 

  150. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27:183–189

    Article  PubMed  CAS  Google Scholar 

  151. Kaihara S, Kim S, Kim BS, Mooney DJ, Tanaka K, Vacanti JP (2000) Survival and function of rat hepatocytes cocultured with nonparenchymal cells or sinusoidal endothelial cells on biodegradable polymers under flow conditions. J Pediatr Surg 35:1287–1290

    Article  PubMed  CAS  Google Scholar 

  152. Kim SS, Sundback CA, Kaihara S, Benvenuto MS, Kim BS, Mooney DJ, Vacanti JP (2000) Dynamic seeding and in vitro culture of hepatocytes in a flow perfusion system. Tissue Eng 6:39–44

    Article  PubMed  CAS  Google Scholar 

  153. Sachs EM, Cima MJ, Williams P, Brancazio D, Cornie J (1992) Three dimensional printing. J Eng Ind 114:481–488

    Article  Google Scholar 

  154. Griffith LG, Wu B, Cima MJ, Powers MJ, Chaignaud B, Vacanti JP (1997) In vitro organogenesis of liver tissue. Ann NY Acad Sci 831:382–397

    Article  PubMed  CAS  Google Scholar 

  155. Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ, Sohn J, Mukai K, Griffith LG, Vacanti JP (1998) Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg 228:8–13

    Article  PubMed  CAS  Google Scholar 

  156. Madou M (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC, Boca Raton, Flal.

    Google Scholar 

  157. Kaihara S, Borenstein J, Koka R, Lalan S, Ochoa ER, Ravens M, Pien H, Cunningham B, Vacanti JP (2000) Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng 6:105–117

    Article  PubMed  CAS  Google Scholar 

  158. Kaazempur-Mofrad MR, Vacanti JP, Kamm RD (2001) Computational modeling of blood flow and rheology in fractal microvascular networks. Comp Fluid Solid Mech 2:864–867

    Google Scholar 

  159. Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J, Detmar M, Vacanti JP (2002) Microvascular networks for tissue-engineered organs. 5th International Meeting of the Tissue Engineering Society International, Kobe, Japan

    Google Scholar 

  160. TIME (2000) The hottest jobs of the future. 22 May 2000

    Google Scholar 

  161. Lavine M, Roberts L, Smith O (2002) The bionic human. Science 295:995

    Article  CAS  Google Scholar 

  162. Lysaght MJ, Hazlehurst AL (2004) Tissue engineering: the end of the beginning. Tissue Eng 10:309–320

    Article  PubMed  Google Scholar 

  163. Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK (2004) Tissue engineering: creation of long-lasting blood vessels. Nature 428:138–139

    Article  PubMed  CAS  Google Scholar 

  164. LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop 395:81–98

    Article  PubMed  Google Scholar 

  165. Lickorish D, Ramshaw JA, Werkmeister JA, Glattauer V, Howlett CR (2004) Collagen-hydroxyapatite composite prepared by biomimetic process. J Biomed Mater Res 68A:19–27

    Article  CAS  Google Scholar 

  166. Oral E, Peppas NA (2004) Responsive and recognitive hydrogels using star polymers. J Biomed Mater Res 68A:439–447

    Article  CAS  Google Scholar 

  167. Tabata Y, Miyao M, Yamamoto M, Ikada Y (1999) Vascularization into a porous sponge by sustained release of basic fibroblast growth factor. J Biomater Sci Polym Ed 10:957–968

    PubMed  CAS  Google Scholar 

  168. Smith MK, Peters MC, Richardson TP, Garbern JC, Mooney DJ (2004) Locally enhanced angiogenesis promotes transplanted cell survival. Tissue Eng 10:63–71

    Article  PubMed  CAS  Google Scholar 

  169. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature responsive cell culture surfaces. Circ Res 90:e40

    Article  PubMed  CAS  Google Scholar 

  170. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688

    Article  PubMed  CAS  Google Scholar 

  171. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  PubMed  CAS  Google Scholar 

  172. Pratt AB, Weber FE, Schmoekel HG, Muller R, Hubbell JA (2004) Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng 86:27–36

    Article  PubMed  CAS  Google Scholar 

  173. Atala A (2004) Tissue engineering for the replacement of organ function in the genitourinary system. Am J Transplant 4:58–73

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shin, M., Vacanti, J. (2007). Tissue Engineering. In: Satava, R.M., Gaspari, A., Di Lorenzo, N. (eds) Emerging Technologies in Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39600-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39600-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39599-7

  • Online ISBN: 978-3-540-39600-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics