Advertisement

Progress in Dye and Excimer Laser Sources for Remote Sensing

  • T. Srinivasan
  • H. Egger
  • T. S. Luk
  • H. Pummer
  • C. K. Rhodes
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 39)

Abstract

In laser based remote sensing, atmospheric constituents are identified and their concentration is determined through observation of the characteristic interaction of the laser radiation with specific atmospheric constituents. Techniques such as resonance fluorescence and resonance Raman scattering involve tuning the laser to a frequency characteristic of the sample and observing the radiation from the sample at the same or a slightly different frequency. The temporal behavior of the observed signal contains the information on the spatial distribution of the sample and the intensity indicates its concentration. For general application of this method, the laser radiation must be tunable over a wide range.

Keywords

Excimer Laser Saturable Absorber Flash Lamp Resonance Raman Scattering High Output Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laser Monitoring of the Atomosphere, E. D, Hinkley (ed.), New York, Springer Verlag, 1976.Google Scholar
  2. 2.
    F. N. Balkatov, B. A. Barikhin and L. V. Sukhanov, JETP Lett. 19, 174 (1974).ADSGoogle Scholar
  3. 3.
    T. Okada, M. Maeda and Y. Miyazoe, IEEE J. Quantum. Electron. QE-15, 616 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    A. Hirth, Th. Lasser, R. Meyer and K. Schetter, Opt. Commun. 34, 223 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    O. Uchino, M. Maeda and M. Hirono, IEEE J. Quantum. Electron. QE-15, 1094 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    K. Hohla, Laser Focus 18, 67 (1982).Google Scholar
  7. 7.
    T. R. Loree, K. B. Butterfield, and D. L. Banker, Appl, Phys. Lett. 32, 171 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    J. Bokor, J. Zavelovich, and C. K. Rhodes, Phys. Rev. A21, 1453 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    J. Liegel, F. K. Tittel, W. L, Wilson, Jr., and G. Marowsky, Appl. Phys. Lett. 39, 369 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    A. J. Andrews, A. J. Kearsely, M. C. Gowen, and C. E. Webb. Topical Meeting on Excimer Lasers (1979). Digest of Technical Papers Optical Soc. of America IEEE Cat. Number 79CH1470–4QEA.Google Scholar
  11. 11.
    R. S. Hargrove, J. A. Paisner, Topical Meeting on Excimer Lasers (1979). Digest of Technical Papers Optical Soc. of America IEEE Cat. Number 79CH1470–4QEA.Google Scholar
  12. 12.
    J. Goldhar and J. R. Murray, Opt. Lett. 1, 199 (1977).ADSCrossRefGoogle Scholar
  13. 13.
    J. R. Murray, J. Goldhar, and A. Szöke, Appl. Phys. Lett. 32, 551 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    I. J. Bigio, and M. Slatkine, Opt. Lett. 6, 336 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    J. Goldhar, W. R. Rapaport, and J. R. Murray, IEEE J. Quantum. Electron. QE-16, 235 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    H. Egger, T. Srinivasan, K. Hohla, H. Scheingraber, C. R. Vidal, H. Pummer, and C. K. Rhodes, Appl. Phys. Lett. 39, 37 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    R. T. Hawkins, H. Egger, J. Bokor, and C. K. Rhodes, Appl. Phys. Lett. 36, 391 (1980).ADSCrossRefGoogle Scholar
  18. 18.
    A. J. Mendelsohn, R. Normandin, S. E. Harris and J. F. Young, Appl. Phys. Lett. 38, 603 (1981).ADSCrossRefGoogle Scholar
  19. 19.
    J. J. Snyder, Laser Focus 18, 55 (1982), Laser Spectroscopy, J. L. Hall and J. L. Carlsten (ed.), Berlin, Springer Verlag, 1977Google Scholar
  20. 19a.
    L. S. Lee and A. L. Schawlow, Opt. Lett, 6, 610 (1981),ADSCrossRefGoogle Scholar
  21. 20.
    D. F. Muller, H. Egger, and B. Yost, Rev. Sci. Instrura. 52, 1575 (1981).ADSCrossRefGoogle Scholar
  22. 21.
    T. R. Loree, R. C. Sze and D. L. Barker, Appl. Phys. Lett. 31, 37 (1977).ADSCrossRefGoogle Scholar
  23. 22.
    J. C. White and D. Henderson, IEEE J. Quantum Electron. QE-18, 941 (1982).Google Scholar
  24. 23.
    R. Burnham and N. Djeu, Opt. Lett. 3, 215 (1978).ADSCrossRefGoogle Scholar
  25. 24.
    N. Djeu and R. Burnham, Appl. Phys. Lett. 30, 473 (1977).ADSCrossRefGoogle Scholar
  26. 25.
    D. Cotter, D. C. Hanna, P. A. Kärkkäinen and R. Wyatt, Opt. Commun. 15, 143 (1975).ADSCrossRefGoogle Scholar
  27. 26.
    H. Egger, H. Pummer and C. K. Rhodes, Laser Focus 18, 59 (1982); High Power Lasers and Applications, K. L. Kompa and H. Walther (ed.), Berlin, Springer Verlag, 1978.Google Scholar
  28. 27.
    H. Egger, T. S. Luk, K. Boyer, D. F. Muller, H. Pummer, T. Srinivasan, and C. K. Rhodes, to be published.Google Scholar
  29. 28.
    J. Reintjes, C. She and R. C. Eckardt, IEEE J. Quantum Electron. QE-14, 581.(1978)ADSCrossRefGoogle Scholar
  30. 28a.
    H. Puell, K. Spanner, W. Falkenstein, and W. Kaiser, Phys. Rev. A14, 2240 (1976)ADSCrossRefGoogle Scholar
  31. 28b.
    H. Scheingraber, H. Puell, and C. R. Vidal, Phys. Rev. A18, 2585 (1978).ADSCrossRefGoogle Scholar
  32. 29.
    H. Egger, R. T. Hawkins, J. Bokor, H. Pummer, M. Rothschild, and C. K. Rhodes, Opt. Lett. 5, 282 (1980)ADSCrossRefGoogle Scholar
  33. 29a.
    H. Pummer, T. Srinivasan, H. Egger, K. Boyer, T. S. Luk, and C. K. Rhodes, Opt. Lett 7, 93 (1982).ADSCrossRefGoogle Scholar
  34. 30.
    V. I. Tomin, A. J. Alcock, W. J. Sarjeant and K. E. Leopold, Opt. Commun. 26, 396 (1978).ADSCrossRefGoogle Scholar
  35. 31.
    J. Y. Allain, Appl. Optics 18, 287 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • T. Srinivasan
    • 1
  • H. Egger
    • 1
  • T. S. Luk
    • 1
  • H. Pummer
    • 1
  • C. K. Rhodes
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations