Advertisement

Progress in Laser Sources for Remote Sensing

  • A. Mooradian
  • P. F. Moulton
  • N. Menyuk
Part of the Springer Series in Optical Sciences book series (SSOS, volume 39)

Abstract

Substantial progress in both active and passive remote sensing using laser sources has been demonstrated in the past several years. At present, the development of laser remote sensing is limited by the availability of adequate tunable laser sources. We describe here the results of recent progress in the development of various tunable laser sources which will be of use for both active and passive laser remote sensing. Included among these sources are transition-metal ion-doped solid-state lasers, semiconductor diode lasers in external cavities, miniature CO2 TEA lasers, and frequency conversion in infrared nonlinear materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. F. Johnson, R. E. Dietz and H. J. Guggenheim, “Spontaneous and Stimulated Emission from Co2+ Ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    P. F. Moulton and A. Mooradian, “Broadly Tunable CW Operation of Ni:MgF2 and Co:MgF2 Lasers,” Appl. Phys. Lett. 35, 838 (1979).ADSCrossRefGoogle Scholar
  3. 3.
    N. Menyuk and P. F. Moulton, “Development of a High-Repetition-Rate Mini-TEA Laser,” Rev. Sci. Instrum. 51, 216 (1980).Google Scholar
  4. 4.
    D. K. Killinger and N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    D. K. Killinger, N. Menyuk and W. E. DeFeo, “Remote Sensing of CO Using Frequency-Doubled CO2 Laser Radiation,” Appl. Phys. Lett. 36, 402 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    N. Menyuk, D. K. Killinger and W. E. DeFeo, “Remote Sensing of NO Using a Differential Absorption LIDAR,” Appl. Opt. 19, 3282 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    A. Mooradian, “High Resolution Tunable Infrared Lasers,” in Laser Spectroscopy, R. G. Brewer and A. Mooradian, Eds. (Plenum Press, New York, 1974), pp. 223–236.CrossRefGoogle Scholar
  8. 8.
    R. L. Byer, “Nonlinear Optical Phenomena and Materials,” in Annual Review of Materials Science, Vol. 4, R. H. Bube and R. W. Roberts, Eds. (Annual Reviews, Inc., Palo Alto, 1974), pp. 147–190.Google Scholar
  9. 9.
    H. Kildal and J. C. Mikkelsen, “Efficient Doubling and Frequency Mixing in the Infrared Using the Chalcopyrite CdGeAs2,” Opt. Commun. 10, 306 (1974).ADSCrossRefGoogle Scholar
  10. 10.
    G. W. Iseler, H. Kildal and N. Menyuk, “Ternary Semiconductor Crystals for Nonlinear Optical Applications,” in Institute of Physics Conference, Series No. 35 (Institute of Physics, London, 1977), pp. 73–88.Google Scholar
  11. 11.
    H. Kildal and G. W. Iseler, “Laser-Induced Surface Damage of Infrared Nonlinear Materials,” Appl. Opt. 15, 3062 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    N. Menyuk, G. W. Iseler and A. Mooradian, “High-Efficiency High-Average-Power Second-Harmonic Generation with CdGeAs2,” Appl. Phys. Lett. 29, 422 (1976).ADSCrossRefGoogle Scholar
  13. 13.
    M. W. Fleming and A. Mooradian, “Spectral Characteristics of External-Cavity Controlled Semiconductor Lasers,” IEEE J. Quantum Electron. 17, 44 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • A. Mooradian
    • 1
  • P. F. Moulton
    • 1
  • N. Menyuk
    • 1
  1. 1.Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonUSA

Personalised recommendations