Advertisement

Development of Compact Excimer Lasers for Remote Sensing

  • James B. Laudenslager
  • I. Stuart McDermid
  • Thomas J. Pacala
Part of the Springer Series in Optical Sciences book series (SSOS, volume 39)

Abstract

Active laser remote sensing is an emerging technique which has the unique capability of providing range-resolved measurements of gaseous and particulate species without day-night restrictions as is the case with certain passive sensing methods. The coherent output of a laser source can be used to interogate small areas, even from orbital altitudes, and pulsed lasers can be used to obtain high spatial resolution for concentration profiles by range gating the return signal. Laser measurements of chemical species can be made using differential absorption, DIAL, laser induced fluorescence, LIF, and by a new highly sensitive in-situ method resonance ionization spectroscopy, RIS. All these measurement techniques require tunable, narrow spectral bandwidth laser sources. Important atmospheric species suitable for ultraviolet or visible laser detection are: O3 SO2, and NO2, by DIAL methods, OH, NO, Na, K, Li, Ca and Ca+ by LIF, and the RIS method in conjunction with a mass spectrometer may prove to be a general point monitoring method for a wide variety of trace atmospheric molecules.

Keywords

Excimer Laser Narrow Bandwidth XeCl Excimer Laser Intracavity Etalon Dial Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Laudenslager, R. W. Svorec, I. S. McDermid, and T. J. Pacala, “Development and Application of Excimer Lasers for Remote Sensing, “Conf. Abst. Tenth Intl. Laser Radar Conf., Silver Spring, MD., p. 80, October (1980).Google Scholar
  2. 2.
    I. S. McDermid and J. B. Laudenslager, “Lifetimes and Quenching Rate Constants Relevant to Remote Sensing of Hydroxyl Radicals with 308 nm Excitation (XeCl),” Technical Digest of Spectroscopy in Support ot Atmospheric Measurements, Sarasota, FL, November 1980, Paper WP13–1. J.Chem.Phys., Scheduled for 15 Feb 1982 edition.Google Scholar
  3. 3.
    O. Uchino, M. Maeda, and M. Hirono, IEEE J. of Quantum Electron. QE-15, 1094 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    O. Uchino, M. Maeda, J. Kohno, T. Shibata, C. Nagasawa, and M. Hirono, Appl. Phys. Lett. 33, 807 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    M. Nicolet, “An Overview of Aeronomic Processes in the Stratosphere and Mesosphere,” Can. J. of Chem. 52, 1381 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    E. L. Baardsen and R. W. Terhune, Appl. Phys. Lett. 21, 209 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    C C. Wang and L. I. Davis, Phys. Rev. Lett. 32, 349 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    D. D. Davis, W. Heaps, and T. McGee, Geophys. Res. Lett. 3, 331 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    W. Heaps, unpublished.Google Scholar
  10. 10.
    W. S. Heaps, Appl. Opt. 19, 243 (1980).ADSCrossRefGoogle Scholar
  11. 11.
    T. McKee, Phys. in Can. 36, 41 (1979).Google Scholar
  12. 12.
    T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, Appl. Phys. Lett. 40, 1 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. A. Clyne and I. S. McDermid, Laser Induced Fluorescence: Electronically Excited States of Small Molecules, Advances in Chemical Physics edited by K. P. Lawley (John Wiley & Sons, England, in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • James B. Laudenslager
    • 1
  • I. Stuart McDermid
    • 1
  • Thomas J. Pacala
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations