Advertisement

Remote Sensing of OH in the Atmosphere Using the Technique of Laser-Induced Fluorescene

  • Charles C. Wang
Part of the Springer Series in Optical Sciences book series (SSOS, volume 39)

Abstract

The hydroxyl radical (OH) is a reactive species which controls many of the chemical processes operative in the atmosphere. OH is important in ozone chemistry because it relates to the process of photochemical smog formation in the troposphere and to the partitioning of the odd-nitrogen and odd-chlorine compounds in the stratosphere. Various estimates [Weinstock and Niki, 1972; Liu, 1977; Chameides, 1978; Hameed et al., 1979] place the global yearly averaged OH concentration at between 105 molecules/cm3 and 106 molecules/cm3, depending to a large extent on the assumed perturbations to the natural atmosphere. However, measurements of OH in the troposphere have been scarce, and results of these measurements [Viang et al., 1975; Davis et al., 1976; Perner et al., 1976; Campbell et al., 1979] have been less than satisfactory. For example, the absorption technique [Perner et al., 1976] should in principle provide accurate OH measurements but remains to be developed [Killinger and Wang, 1977]. The isotope tracing technique [Campbell et al., 1979] offers an interesting alternative for OH monitoring, but remains to be calibrated, with possible systematic errors associated with the technique identified and remedied.

Keywords

Shot Noise Rotational Level Absorption Technique Niwot Ridge Beam Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell, M. J., J. C. Sheppard, and B. F. Au, Measurement of hydroxyl concentration in boundary layer air by monitorino CO oxidation, Geophys. Res. Lett. 6, 175–178 (1979).ADSCrossRefGoogle Scholar
  2. Chameides, W. L, The photochemical role of tropospheric nitrogen oxides, Geophys. Res. Lett. 5, 17–20 (1978).ADSCrossRefGoogle Scholar
  3. Hameed, S., J. P. Pinto, and R. W. Stewart, Sensitivity of the predicted CO-OH-CH4 perturbation to tropospheric NOX concentrations, J. Geophys. Res. 84, 763–768 (1979).ADSCrossRefGoogle Scholar
  4. Hanabusa, M., C. C. Wang, J. Japar, D. K. Killinger, and W. Fisher, Pulse width dependence of ozone interference in the laser fluorescence measurement of OH in the atmosphere, J. Chem. Phys. 66, 2118–2120 (1977).ADSCrossRefGoogle Scholar
  5. Hyatt, H. A., J. M. Cherlow, W. R. Fenner, and S. P. L. Porto, Cross section for the Raman effect in molecular nitrogen gas, J. Opt. Soc. Am. 63, 1604–1606 (1973).ADSCrossRefGoogle Scholar
  6. Killinger, D. K., and C. C. Wang, Absorption measurements of OH using a cw tunable laser, Chem. Phys. Lett. 52, 374–376 (1977).ADSCrossRefGoogle Scholar
  7. Killinger, D. K., and C. C. Wang, Direct measurements of the’Gibbs free energy of OH using a cw tunable laser, J. Chem. Phys. 71, 1582–1584 (1979).ADSCrossRefGoogle Scholar
  8. Killinger, D. K., C. C. Wang, and M. Hanabusa, Intensity and pressure dependence of resonance fluorescence of OH induced by a tunable uv laser, Phys. Rev. A 13, 2145–2152 (1976).ADSCrossRefGoogle Scholar
  9. Liu, S. C, Possible effects on tropospheric O3 and OH due to NO emissions, Geophys. Res. Lett. 4, 325–328 (1977).ADSCrossRefGoogle Scholar
  10. Perner, D., D. H. Ehhalt, H. W. Patz, U. Platt, E. P. Roth, and A. Volz, OH radicals in the lower troposphere, Geophys. Res. Lett. 3, 466–468 (1976).ADSCrossRefGoogle Scholar
  11. Selzer, P. M., and C. C. Wang, Quenching rates and fluorescence efficiency in the A2 + state of OH, J. Chem. Phys. 71, 3786–379] (1979).ADSCrossRefGoogle Scholar
  12. Streit, G. E., C. J. Howard, and A. L. Schmeltekopf, Temperature dependence of O(1D) rate constants for reactions with O2, N2, CO2, O3, and H2O, J. Chem. Phys. 65, 4761–4764 (1976).ADSCrossRefGoogle Scholar
  13. Wang, C. C., and L. I. Davis, Jr., Measurement of hydroxyl concentrations in air using a tunable uv laser beam, Phys. Rev. Lett. 32., 349–352 (1974a).ADSCrossRefGoogle Scholar
  14. Wang, C. C., and L. I. Davis, Jr., Ground-state population distribution of OH determined with a tunable uv laser, Appl. Phys. Lett. 25, 34–35 (1974b).ADSCrossRefGoogle Scholar
  15. Wang, C. C., and L. I. Davis, Jr., Two-photon dissociation of water: A new OH source for spectroscopic studies, J. Chem, Phys. 62, 53–55 (1975).ADSCrossRefGoogle Scholar
  16. Wang, C. C., and C. M. Huang, Accurate determination of the band oscillator strength for the (0,0) ultraviolet transitions of OH, Phys. Rev. A 21, 1235–1236 (1980).ADSCrossRefGoogle Scholar
  17. Wang, C. C., and D. K. Killinger, Simultaneous determination of rotational and translational temperatures of 0H(2II) in a gas discharge, Phys. Rev. Lett. 39, 929–932 (1977).ADSCrossRefGoogle Scholar
  18. Wang, C. C., and D. K. Killinger, Effect of rotational excitation on the band oscillator strength of OH, Phys. Rev. A 20, 1495–1498 (1979).ADSCrossRefGoogle Scholar
  19. Wang, C. C., L. I. Davis, Jr., C. H. Wu, S. Japar, H. Niki, and B. Weinstock, Hydroxyl radical concentrations measured in ambient air, Science 189, 797–800 (1975).ADSCrossRefGoogle Scholar
  20. Wang, C. C., L. I. Davis, Jr., C. H. Wu, and S. Japar, Laser-induced dissociation of ozone and resonance fluorescence of OH in ambient air, Appl. Phys. Lett. 28, 14–16 (1976).ADSCrossRefGoogle Scholar
  21. Wang, C. C., D. K. Killinger, and C. M. Huang, Rotational dependence in the linewidth of the ultraviolet transitions of OH, Phys. Rev. A 22, 180–185 (1980).ADSGoogle Scholar
  22. Wang, C. C., M. T. Myers, and D. Zhou, Observation of competition of rotational effects in the intensity of ultraviolet bands of OH, Phys. Rev. Lett. 47, 490 (1981).ADSCrossRefGoogle Scholar
  23. Wang, C. C., L. I. Davis, Jr., P. M. Selzer, and R. Munoz, Improved airborne measurements of OH in the atmosphere using the technique of laser-induced fluorescence, J. Geophys. Res. 86, 1181 (1981);ADSCrossRefGoogle Scholar
  24. Wang, C. C., L. I. Davis, Jr., P. M. Selzer, and R. Munoz, Improved airborne measurements of OH in the atmosphere using the technique of laser-induced fluorescence, J. Geophys. Res. 12, 156 (1981).Google Scholar
  25. Weinstock, B., and H. Niki, Carbon monoxide balance in nature, Science 176, 290–292 (1972).ADSCrossRefGoogle Scholar
  26. Wu, C. H., C. C. Wang, S. M. Japar, L. I. Davis, Jr., M. Hanabusa, D. Killinger, H. Niki, and B. Weinstock, Hydroxyl radical measurements in a photochemical reactor by laser-induced fluorescence, Int. J. Chem. Kinetics 8, 756–776 (1976).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Charles C. Wang
    • 1
  1. 1.Engineering and Research Staff, ResearchFord Motor CompanyDearbornUSA

Personalised recommendations