Remote Sensing of Tropospheric Gases and Aerosols with an Airborne DIAL System

  • Edward V. Browell
Part of the Springer Series in Optical Sciences book series (SSOS, volume 39)


A multipurpose airborne differential absorption lidar (DIAL) system has been recently developed at the NASA Langley Research Center to remotely measure the profiles of various gases and aerosols in diverse atmospheric investigations. The capability to rapidly determine the spatial distribution of gases such as ozone, water vapor, sulfur dioxide, and nitrogen dioxide and simultaneously measure the backscattering distribution of aerosols at several laser wavelengths provides the opportunity for developing an extensive data base for examining the complex interaction of atmospheric dynamics and chemistry.


Lidar Measurement Airborne Lidar Ozone Profile NASA Langley Research Differential Absorption Lidar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Browell, E. V.; Wilkerson, T. D.; and McIlrath, T. J.: Water Vapor Differential Absorption Lidar Development and Evaluation. Appl. Opt., 18, 3474 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    Browell, E. V.: Lidar Measurements of Tropospheric Gases. Opt. Eng., 21, 128 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    Harris, J. E. and Browell, E. V.: Evolutionary Shuttle Atmospheric Lidar Program. Conf. Abs., Ninth International Laser Radar Conference, Munich, Germany, July 2–5, 1979.Google Scholar
  4. 4.
    Browell, E. V., ed.: Shuttle Atmospheric Lidar Research Program — Final Report of Atmospheric Lidar Working Group. NASA SP-433 (1979).Google Scholar
  5. 5.
    Greco, R. V., ed.: Atmospheric Lidar Multi-User Instrument System Definition Study. NASA CR-3303 (1980).Google Scholar
  6. 6.
    Browell, E. V.; Carter, A. F.; and Shipley, S. T.: An Airborne Lidar System for Ozone and Aerosol Profiling in the Troposphere and Lower Stratosphere. Proceedings of the IAMAP International Quadrennial Ozone Symposium, NCAR, Boulder, CO, August 4–9, 1980.Google Scholar
  7. 7.
    Browell, E. V.; and Shipley, S. T.: Airborne Lidar Investigations of Ozone and Aerosols in the Nonurban Troposphere. Proceedings of the Second Symposium on the Composition of the Nonurban Troposphere, Williamsburg, VA, May 25–28, 1982.Google Scholar
  8. 8.
    Carter, A. F.; Browell, E. V.; Butler, C. F.; Mayo, M. N.; Hall, W. M.; Wilkerson, T. D.; and Siviter, J. H., Jr.: Remote Measurements of Tropospheric Water Vapor with an Airborne DIAL System. Conf. Abs., Eleventh International Laser Radar Conference, Madison, Wisconsin, June 21–25, 1982.Google Scholar
  9. 9.
    Browell, E. V.; Shipley, S. T.; Rosenberg, A.; Hogan, D.; and Wilkerson, T. D.: An Airborne Lidar for Simultaneous Measurements of Temperature and Water Vapor. Conf. Abs., IAMAP Third Scientific Assembly, Hamburg, Federal Republic of Germany, August 17–28, 1981.Google Scholar
  10. 10.
    Rosenberg, A. and Hogan, D. B.: Lidar Technique of Simultaneous Temperature and Humidity Measurements: Analysis of Mason’s Method. Appl. Opt., 20, 3286 (1981).ADSCrossRefGoogle Scholar
  11. 11.
    Scnotland, R. M: Some Observations of the Vertical Profile of Water Vapor by Means of a Laser Optical Radar. Proceedings of the Fourth Symposium on Remote Sensing of the Environment, Ann Arbor, Michigan, April 123–14, 1966.Google Scholar
  12. 12.
    Measures, R. M. and Pilon, G.: A Study of Tunable Laser Techniques for Remote Mapping of Specific Gaseous Constituents of the Atmosphere. Opt-Electronics, 4, 141 (1972).CrossRefGoogle Scholar
  13. 13.
    Byer, R. L. and Garbuny, M.: Pollutant Detection by Absorption Using Mie Scattering and Topographic Targets as Retroreflectors. Appl. Opt., 12, 1496 (1973).ADSCrossRefGoogle Scholar
  14. 14.
    Schotland, R. M.: Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption. J. Appl. Meteorol., 13, 71 (1974).CrossRefGoogle Scholar
  15. 15.
    Thompson, R. T. Jr.: Differential Absorption and Scattering Sensitivity Predictions. NASA CR-2627 (1976).Google Scholar
  16. 16.
    Inn, E. C. Y. and Tanaka, Y.: Ozone Absorption Coefficients in the Visible and Ultraviolet Regions. Advances in Chemistry, No. 21, American Chemical Society, Washington, D.C., 1959, p. 263.Google Scholar
  17. 17.
    Browell, E. V.; Carter, A. F.; and Wilkerson, T. D.: An Airborne Differential Absorption Lidar System for Water Vapor Investigations. Opt. Eng., 20, 84 (1981).Google Scholar
  18. 18.
    Wilkerson, T. D.; Schwemmer, G.; Gentry, B.; and Giver, L. P.: Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 715 and 732 nm. J. Quant. Spectrosc. Radiât. Transfer, 22, 315 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    Browell, E. V.; Shipley, S. T.; Butler, C. F.; and Ismail, S.: Airborne DIAL Measurements of Ozone and Aerosol Profiles in the 1980 EPA PEPE/NEROS Field Experiment. NASA TN in preparation.Google Scholar
  20. 20.
    Wavelength Control Instrument Provided by M. L. Chanin of the Service d’Aeronomie du CNRS, Verriers-le-Buisson, France.Google Scholar
  21. 21.
    Mason, J. B.: Lidar Measurement of Temperature: A New Approach. Appl. Opt., 14, 76 (1975).ADSGoogle Scholar
  22. 22.
    Endemann, M. and Byer, R. L.: Simultaneous Remote Measurements of Atmospheric Temperature and Humidity Using a Continuously Tunable IR Lidar. Appl. Opt., 20, 3211 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Edward V. Browell
    • 1
  1. 1.NASA Langley Research CenterHamptonUSA

Personalised recommendations