Gaseous Correlation Spectrometric Measurements

  • J. H. Davies
  • A. R. Barringer
  • R. Dick
Part of the Springer Series in Optical Sciences book series (SSOS, volume 39)


Certain basic criteria must be considered when designing remote sensors. The gaseous species of interest may have characteristic spectra in various bands, so that some flexibility may exist for instrument selection and measurement concept. Major design parameters are:
  1. (a)

    Instrument sensitivity, i.e. adequate signal-to-noise ratio.

  2. (b)

    Instrument specificity, i.e. the ability to discriminate against interferents within the spectral bandpass.

  3. (c)

    Instrument measurement time to receive and process the signal, e.g. finite spectral scan time or interferometer delay.

  4. (d)

    Complementary data requirements e.g. temperature.

  5. (e)

    Data inversion requirements.

  6. (f)

    Size, weight, power and environmental constraints.



Instrumental Technique Aperture Stop Field Stop Interferometer Delay Spectral Bandpass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

I. COSPEC Technology

  1. 1.
    Moffat, A. M., Robbins, J. R., and Barringer, A. R. (1971), Electro-Optical Sensing of Environmental Pollutants. Atmos. Environ. 4, 511–525.Google Scholar
  2. 2.
    Millan, M. M., Gallant, A. J. and Turner, H. E. (1976) The Application of Correlation Spectroscopy to the Study of Dispersion from Tall Stacks. Atmos. Environ. 10, pp 499–511.CrossRefGoogle Scholar
  3. 3.
    Millan, M. M. and Hoff, R. M. (1977) Dispersive Correlation Spectroscopy: A Study of Mask Optimization Procedures. Applied Optics 16 pp 1609–1618.ADSCrossRefGoogle Scholar
  4. 4.
    Millan, M. M. and Chung, Y.S. (1977) Detection of a Plume at 400 km from the Source. Environ., 11 949–944.Google Scholar
  5. 5.
    Haulet, R., Zetwoog, P. and Sabroux, J.D. (1978) Sulphur Dioxide Discharge From Mount Etna. Nature 268 pp 715–77.ADSCrossRefGoogle Scholar
  6. 6.
    Sandroni, S. and Cerutti, C. (1978) Long Path Measurements of Atmospheric Sulphur Dioxide by a Barringer C0SPEC III. Atmos. Environ., 11 pp 1235–1232.Google Scholar
  7. 7.
    Hamilton, P. M., Varey, R. H. and Millan, M. M. (1978) Remote Sensing of Sulphur Dioxide. Atmos. Environ. 12 pp 127–133.ADSCrossRefGoogle Scholar
  8. 8.
    Millan, M. M. and Hoff, R.M. (1978) Remote Sensing of Air Pollutants by Correlation Spectroscopy — Instrumental Response Characteristics. Atmos. Environ. 12, pp 853–864.ADSCrossRefGoogle Scholar
  9. 9.
    Van Egmond, N. D., Tissing, E., Onderlinden, D. and Bartels, C. (1978) Quantitative Evaluation of Mesoscale Air Pollution Transport. Atmos. Environ. 12, 2279–2287.CrossRefGoogle Scholar
  10. 10.
    Guillot, P. et al. (1979) First European Community Campaign for Remote Sensing of Atmospheric Pollution Lacq (France), 7–11 July 1975. Atmos. Environ. 13, 895–917.CrossRefGoogle Scholar
  11. 11.
    Sandroni, S. and De Groot M. (1980) Intercomparison of Remote Sensors of Sulphur Dioxide at the 1979 European Community Campaign at Turbigo. Atmos. Environ. 14, 1331–1333.ADSCrossRefGoogle Scholar

II. GASPEC Technology

  1. 1.
    Infrared, Correlation and Fourier Transform Spectroscopy 1977. In “Computers in Chemistry and Instrumentation Series” Vol. 7. Marcel Dekker Inc. New York.Google Scholar
  2. 2.
    Ward T. V. and Zwick H. H., Gas Cell Correlation Spectrometer: GASPEC, Appl. Opt. 14, 2896, 1975.ADSCrossRefGoogle Scholar
  3. 3.
    Jones, E. P., Ward, T. V. and Zwick, H. H., A Fast Response Atmospheric CO2 Sensor for Eddy Current Correlation Flux Measurements, Atm. Env. 12, 845, 1978.ADSCrossRefGoogle Scholar
  4. 4.
    Russell, J. M., Park, J. K., and Drayson, S. R., Global Monitoring of Stratospheric Halogen Compounds from a Satellite using Gas Filter Correlation Spectroscopy in the Solar Occultation Mode. Appl. Opt. 16, 607, 1977.ADSCrossRefGoogle Scholar
  5. 5.
    Wallio, H. A., Reichle, H. G. Jr., Casas, J. A. and Gormsen, B. M., A New Method for Inferring CO Concentrations from Gas Filter Radiometer Data, 4th Conf. on Atm. Radiation, Toronto 1981. America. Meterological Society, Boston MA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • J. H. Davies
    • 1
  • A. R. Barringer
    • 1
    • 2
  • R. Dick
    • 1
  1. 1.Barringer ResearchTorontoCanada
  2. 2.Barringer ResourcesGoldenUSA

Personalised recommendations