Advertisement

Remote Sensing by Infrared Heterodyne Spectroscopy

  • Michael J. Mumma
Part of the Springer Series in Optical Sciences book series (SSOS, volume 39)

Abstract

Infrared heterodyne spectroscopy is a convenient technique for measuring atomic and molecular spectral lines with high sensitivity and specificity. The instrumental spectral resolving power can be made arbitrarily high although signal-to-noise considerations limit the maximum useful resolving powers (λ/∆λ) to ∽107 for passive sensing. Nevertheless, this provides the capability to resolve completely individual spectral lines, even when the line shapes are doppler-limited at temperature/molecular mass ratios as low as ∽2K/amu. Since the heterodyne process beats the source radiation against a laser local oscillator whose frequency is precisely known (typically to better than 1/107), the methodology provides very precise internal frequency calibration enabling great specificity in line identification and measurement of source motion.

Keywords

Remote Measurement Laboratory Source Remote Observation Laser Heterodyne Individual Spectral Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reférences

  1. 1.
    D. L. Spears, “IR Detectors: Heterodyne and Direct,” this proceedings.Google Scholar
  2. 2.
    G. Chin, D. Buhl, J. M. Florez, “Acouso-Optic Spectrometer for Radio Astironomy,” Heterodyne Systems and Technology, NASA CP-2138 (1980).Google Scholar
  3. 3.
    M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric Ozone Measurement with an Infrared Heterodyne Spectrometer,” Geophys. Res. Letters 5, 317 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    M. J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, and D. Zipoy, “Discovery of Natural Gain Amplification in the 10μm CO2 Laser Bands on Mars: A Natural Laser”, Science, 212, 45 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    J. J. Hillman, T. Kostiuk, D. Buhl, J. L. Faris, J. C. Novaco, and M. J. Mumma, “Precision Measurements of NH3 Spectral Lines near 11 μm Using the Infrared Heterodyne Technique,” Optics Letters 1, 81 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    M. S. Shumate, R. T. Menzies, W. B. Grant, and d. S. McDougal, “Laser Absorption Spectrometer: Remote Measurement of Tropospheric Ozone,” Appl. Opt. 20, 545 (1981).ADSCrossRefGoogle Scholar
  7. 7.
    R. T. Menzies, C. W. Rutledge, R. A. Zanteson, and D. L. Spears, “Balloon-borne Laser Heterodyne Radiometer for Measurements of Stratospheric Trace Species,” Appl. Opt. 20, 536 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    M. Mumma, T. Kostiuk, S. Cohen, D. Buhl, and P. C. von Thuna, “Infrared Heterodyne Spectroscopy of Astronomical and Laboratory Sources at 8.5 μm,” Nature, 253, 514 (1975).ADSCrossRefGoogle Scholar
  9. 8a.
    D. A. Glenar, T. Kostiuk, D. E. Jennings, D. Buhl, and M. J. Mumma, “A Tuneable Diode Laser Heterodyne Spectrometer for Remote Observations Near 8 Microns,” Applied Optics 21, 253 (1982).ADSCrossRefGoogle Scholar
  10. 9.
    M. A. Johnson, A. L. Betz, R. H. McLaren, E. C. Sutton, and C. H. Townes, “Non-thermal 10 μm CO2 Emission Lines in the Atmospheres of Mars and Venus,” Ap. J. 208, L145 (1976).ADSCrossRefGoogle Scholar
  11. 10.
    C. N. Harward and J. M. Hoell, “Atmospheric Solar Absorption Measurements in the 9–11 μm Region using a Diode Laser Heterodyne Spectrometer,” Heterodyne Systems and Technology, NASA CP-2138 (1980).Google Scholar
  12. 11.
    J. D. Rogers, M. J. Mumma, T. Kostiuk, D. Deming, J. J. Hillman, J. Faris, and D. Zipoy, “Is there any Chlorine Monoxide in the Earth’s Stratosphere?”, Science (submitted).Google Scholar
  13. 12.
    R. T. Menzies, “Remote Measurement of CO in the Stratosphere,” Geophys. Res. Lett. 6, 151 (1979).ADSCrossRefGoogle Scholar
  14. 13.
    R. A. McLaren and A. L. Betz, “Infrared Observations of Circumstellar Ammonia in OH/IR Supergiants, Ap. J. 240, L159 (1980).ADSCrossRefGoogle Scholar
  15. 14.
    A. L. Betz, “Ethylene in IRC 10216,” Ap. J. 244, L103, 26 (1981).Google Scholar
  16. 15.
    D. A. Glenar, D. Deming, D. E. Jennings, T. Kostiuk, and M. J. Mumma, “Diode Laser Heterodyne Observations of SiO in Sunspots,” Solar Physics (submitted).Google Scholar
  17. 16.
    T. Kostiuk, M. J. Mumma, F. Espenak, D. Deming, D. Jennings, W. Maguire, and D. Zipoy, “Infrared Heterodyne Observations of 12μm Ethane Emission Lines Near the South Pole of Jupiter,” Icarus (submitted).Google Scholar
  18. 17.
    T. Kostiuk, M. J. Mumma, D. Buhl, L. Brown, J. Faris, and D. Spears, “NH3 Spectral Line Measurements on Earth and Jupiter Using a 10ym Superheterodyne Receiver,” Infrared Physics 17, 431 (1977).ADSCrossRefGoogle Scholar
  19. 18.
    D. Deming, F. Espenak, D. Jennings, T. Kostiuk, and M. J. Mumma, “Evidence for High Altitude Haze-Thickening on the Dark Side of Venus from 10 Micron Heterodyne Spectroscopy of CO2”, Icarus (in press).Google Scholar
  20. 19.
    M. J. Mumma, T. Kostiuk, D. Buhl, D. Deming, and G. Chin and D. Zipoy, “Infrared Heterodyne Spectroscopy”, SPIE 280 (Infrared-Astronony) p. 111 (1981)and Optical Engineering (in press).CrossRefGoogle Scholar
  21. 19a.
    Also see M. J. Mumma, T. Kostiuk, D. Buhl, “A 10μm Laser Heterodyne Spectrometer for Remote Detection of Trace Gases”, Optical Engineering 17, 50 (1977).ADSGoogle Scholar
  22. 20.
    D. A. Glenar, T. Kostiuk, D. E. Jennings, D. Buhl, and M. J. Mumma, “A tuneable Diode Laser Heterodyne Spectrometer for Remote Observations Near 8 Microns,” Applied Optics 21, 253 (1982).ADSCrossRefGoogle Scholar
  23. 20a.
    See also M. Mumma, T. Kostiuk, S. Cohen, D. Buhl, and P. C. von Thuna, “Heterodyne Spectroscopy of Astronomical and Laboratory Sources Using Diode Laser Local Oscillators,” Space Science Reviews, 17, 661 (1975).ADSCrossRefGoogle Scholar
  24. 21.
    M. Abbas, M. J. Mumma, T. Kostiuk, and D. Buhl, “Sensitivity Limits of an Infrared Heterodyne Spectrometer for Astrophysical Applications,” Appl. Opt. 15, 427 (1976).ADSCrossRefGoogle Scholar
  25. 22.
    Heterodyne Systems and Technology, NASA CP 2138 (1980).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Michael J. Mumma
    • 1
  1. 1.Infrared and Radio Astronomy Branch, Code 693NASA/Goddard Space Flight CenterUSA

Personalised recommendations