Skip to main content

Fabrication and Properties of Low Birefringence Spun Fibers

  • Conference paper
Fiber-Optic Rotation Sensors and Related Technologies

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 32))

Abstract

Single-mode optical fibers are birefringent as a result of an (often unintentional) lack of circular symmetry in the core cross section. This and an associated stress anisotropy allow the fiber to support two nearly degenerate orthogonally polarised modes with a small phase-velocity difference. When only one of the modes is excited, the state of polarisation remains constant along the length of the fiber, whereas if both are present, the polarisation state evolves cyclically as the modes beat together in phase relationship. In a typical fiber the magnitude of this intrinsic birefringence is relatively small and it is found that it can be severely modified by environmental factors such as pressure, twists, and bends, which in a practical installation, vary in an unpredictable manner. The overall fiber birefringence, and thus the output polarisation state, cannot be predetermined, and, moreover, vary with time and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Ulrich and M. Johnson, Opt. Lett. 4, 152 (1979)

    Article  ADS  Google Scholar 

  2. G. Schiffner, W. R. Leeb, H. Krammer and J. Wittman, Appl. Opt. 18, 2096 (1979)

    Article  ADS  Google Scholar 

  3. S. K. Sheem and T. G. Giallorenzi, Appl. Phys. Lett. 35, 914 (1979)

    Article  ADS  Google Scholar 

  4. R. Ulrich, Opt. Lett. 5, 173 (1980)

    Article  ADS  Google Scholar 

  5. T. A. Steinberg and T. G. Giallorenzi, Appl. Opt. 15, 2440 (1976)

    Article  ADS  Google Scholar 

  6. Y. Yamamoto and T. Kimura, IEEE J. Quantum Electron. QE-V7, 919 (1981);

    Article  ADS  Google Scholar 

  7. F. Fabre, L. Jeunhomme, I. Joindot, M. Monerie and J. C. Simon, IEEE J. Quantum Electron. QE-17, 897 (1981)

    Article  ADS  Google Scholar 

  8. V. Ramaswamy, W. G. French and R. D. Standley, Appl. Opt. 17, 3014 (1978)

    Article  ADS  Google Scholar 

  9. A. M. Smith, Appl. Opt. 17, 52, (1978)

    Article  ADS  Google Scholar 

  10. A. Papp and H. Harms, J. Magnetism Magnetic Materials 2, 287 (1976); and Appl. Opt. 3729 (1980)

    Article  Google Scholar 

  11. S. C. Rashleigh, Opt. Lett. 6, 19 (1981);

    Article  ADS  Google Scholar 

  12. S. C. Rashleigh, Opt. Lett. 5, 392 (1980)

    Article  ADS  Google Scholar 

  13. H. Harms, A. Papp and K. Kempter, Appl. Opt. 15, 799 (1976)

    Article  ADS  Google Scholar 

  14. R.H. Stolen and E. H. Turner, Appl. Opt. 19, 842 (1980)

    Article  ADS  Google Scholar 

  15. Y. Yen and R. Ulrich, Opt. Lett. 6, 278 (1981)

    Article  ADS  Google Scholar 

  16. H. C. Lefevre, Electron. Lett. 16, 778 (1980)

    Article  ADS  Google Scholar 

  17. M. Johnson, Opt. Lett. 5, 142 (1980)

    Article  ADS  Google Scholar 

  18. G. W. Day, D. N. Payne, A. J. Barlow and J. J. Ramskov-Hansen, Opt. Lett. 7, 238 (1982)

    Article  ADS  Google Scholar 

  19. S. R. Norman, D. N. Payne, M. J. Adams and A. M. Smith, Technical Digest, Second International Conference IOOC, 10. 1 (1979)

    Google Scholar 

  20. S. C. Rashleigh and R. Ulrich, Opt. Lett, 3, 60 (1978)

    Article  ADS  Google Scholar 

  21. R. B. Dyott, J. R. Cozens and D. G. Morris, Electron. Lett. 15, 380 (1979)

    Article  Google Scholar 

  22. S. R. Norman, D. N. Payne, M. J. Adams and A. M. Smith, Electron. Lett. 15, 309 (1979)

    Article  ADS  Google Scholar 

  23. R. B. Calligaro, D. N. Payne, R. S. Anderssen and B. A. Ellem, Electron. Lett. 18, 474 (1982)

    Article  Google Scholar 

  24. York Technology P101 Preform Profiler

    Google Scholar 

  25. R. Ulrich and A. Simon, Appl. Opt. 18, 2241 (1979)

    Article  ADS  Google Scholar 

  26. S. C. Rashleigh and R. Ulrich, Appl. Phys. Lett. 34, 768 (1979)

    Article  ADS  Google Scholar 

  27. A. J. Barlow, J. J. Ramskov-Hansen and D. N. Payne, Appl. Opt. 20, 2962 (1981)

    Article  ADS  Google Scholar 

  28. A. J. Barlow, D. N. Payne, M. R. Hadley and R. J. Mansfield, Electron. Lett. 17, 725 (1981)

    Article  ADS  Google Scholar 

  29. L. Jeunhomme and M. Monerie, Electron. Lett. 16, 921 (1980)

    Article  ADS  Google Scholar 

  30. R. J. Mansfield — Private Communication

    Google Scholar 

  31. M. Varnham — Private Communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Payne, D.N., Barlow, A.J., Ramskov-Hansen, J.J., Hadley, M.R., Mansfield, R.J. (1982). Fabrication and Properties of Low Birefringence Spun Fibers. In: Ezekiel, S., Arditty, H.J. (eds) Fiber-Optic Rotation Sensors and Related Technologies. Springer Series in Optical Sciences, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39490-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39490-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13527-3

  • Online ISBN: 978-3-540-39490-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics