Advertisement

Measurement of Interior Displacement of the Human Crystalline Lens by Using Speckle Pattern

  • H. Uozato
  • H. Itani
  • T. Matsuda
  • M. Saishin
  • S. Nakao
  • J. Okada
  • K. Iwata
  • R. Nagata
Conference paper
  • 204 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 31)

Abstract

We propose a method for the precision measurement of interior displacement of three-dimensional transparent bodies by using speckle pattern technique. In this paper, we apply this method to displacement measurements in the interior of the human crystalline lens. The human crystalline lens (in vitro) is illuminated with a thin sheet-like beam of a laser light, and the speckle patterns created by the light scattering from the particles in the illuminating plane is recorded by double exposure with before and after deformation. In-plane displacement fringe patterns are obtained by optical spatial filtering techniques. This method is briefly discussed theoretically and the experimental results are presented to demonstrate the validity of this method.

Keywords

Speckle Pattern Crystalline Lens Fringe Spacing Osaka Prefecture Double Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Nakajima and J. Nakagawa, Jpn. J. Clin. Ophthalmol. 20 (1966) 919.Google Scholar
  2. 2.
    B. Patnaik, Invest. Ophthalmol. 6 (1967) 601.Google Scholar
  3. 3.
    N. Brown, Exp. Eye Res. 15 (1973) 441.CrossRefGoogle Scholar
  4. 4.
    V. Glezer, Fiziol. Zhur. 41 (1955) 830.Google Scholar
  5. 5.
    W. D. O’Neill and L. Stark, J. Opt. Soc. Amer. 58 (1968) 570.ADSCrossRefGoogle Scholar
  6. 6.
    A.E. Ennos, In: Laser Speckle and Related Phenomena, ed. by J.C. Dainty, Topics in Applied Physics, Vol. 9 ( Springer, Berlin, Heidelberg, New York 1975 ) pp. 203–253Google Scholar
  7. 7.
    C. Vest, Holographic interferometry, John Wiley, 1979.Google Scholar
  8. 8.
    H. Uozato, K. Iwata and R. Nagata, Preprint of the meeting of the Jpn. Soc. Appl. Phys., 1976 Spring, p122, and 1976 Autumn, p168.Google Scholar
  9. 9.
    D. Barker and M. E. Fourney, Expl. Mech. 16 (1976) 209.CrossRefGoogle Scholar
  10. 10.
    F. P. Chiang, In: The engineering uses of coherent optics (Ed. E. R. Robertson), Cambridge Univ. Press, p 249–262, 1976.Google Scholar
  11. 11.
    H. Uozato, New measuring methods in photomechanics; Some new optical methods for use in experimental stress analysis, Doctoral Dissertation, Univ. of Osaka Prefecture (Feb. 1978) pp 137.Google Scholar
  12. 12.
    H. Uozato, K. Iwata, R. Nagata and S. Nakao, J. Nara Med. Assoc. 31 (1980) 307.Google Scholar
  13. 13.
    H. Uozato, T. Ikuno, T. Matsuda and S. Nakao, J. Ophthalmol. Opt. Soc. Jpn. 2 (1981) 41.Google Scholar
  14. 14.
    Y. Kikkawa and K. Sato, Exp. Eye Res. 2 (1963) 210.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • H. Uozato
    • 1
  • H. Itani
    • 1
  • T. Matsuda
    • 1
  • M. Saishin
    • 1
  • S. Nakao
    • 1
  • J. Okada
    • 2
  • K. Iwata
    • 2
  • R. Nagata
    • 2
  1. 1.Department of OphthalmologyNara Medical UniversityKashihara, Nara 634Japan
  2. 2.Department of Mechanical Engineering, College of EngineeringUniversity of Osaka PrefectureSakai, Osaka 591Japan

Personalised recommendations