Skip to main content

Progress in Integrated Optics Lasers

  • Conference paper
Integrated Optics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 48))

  • 173 Accesses

Abstract

Recent progress in the integrated optics lasers especially for the dynamic-single-mode (DSM) semiconductor lasers with distributed structures are reviewed. The DSM laser is developed as light sources with pure spectrum even under the dynamic operation for the wide-band optical fiber communication in the lowest loss wavelength region of l. 5μm, in which the techniques in the integrated optics are utilized. It consists of a mode selective resonator and a trarrsverse-mode-control led waveguide, such as the narrow-striped distributed-Bragg-reflector (DBR) or distributed feedback (DFB), so as to maintain a fixed axial-mode under the rapid direct-modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Miya, Y. Terunuma, T. Hosaka and T. Miyashita, “An ultimately low-loss single-mode fiber at l. 5μm,” Electron. Lett., vol. 15, No. 4, pp. 106–108, Feb. 1979.

    Article  ADS  Google Scholar 

  2. W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Total dispersion in graded index single-mode fibers”, Electron. Lett., vol. 15, no. 15, pp. 474–476, 1979.

    Article  Google Scholar 

  3. T. Ikegami, “Spectrum broadening and tailing effect in direct modulated injection lasers,” Proc. 1st European Conf. Optical Fiber Commun., London, pp. 111, 1975.

    Google Scholar 

  4. K. Kishino, S. Aoki and Y. Suematsu, “Wavelength variation of l. 6μm wavelength buried heterostructure GalnAsP/InP lasers due to direct modulation,” IEEE J. Quantum Electron., vol. QE-18, no. 3, pp. 343–351, Mar. 1982.

    Article  ADS  Google Scholar 

  5. K. Utaka, K. Kobayashi, K. Kishino and Y. Suematsu, “1.5–1.6μm GalnAsP/InP integrated twin-guide lasers with first-order distributed Bragg reflectors,” Electron. Lett., vol. 16. No. 12, pp. 455–456, June 1980.

    Article  ADS  Google Scholar 

  6. K. Utaka, K. Kobayasi, and Y. Suematsu, ‘Lasing characteristics of 1.5–1.6μm GalnAsP/InP integrated twin-guide lasers with distributed Bragg reflectors’, IEEE J. Quantum Electron., vol. QE-17, No. 5, pp. 651–658, May 1981.

    Article  ADS  Google Scholar 

  7. K. Utaka, Y. Suematsu, K. Kobayashi and H. Kawanishi, “GalnAsP/InP integrated twin-guide lasers with first order distributed Bragg reflector at l. 3μm wavelength”, Japan J. Appl. Phys., vol. 19, pp. 137–140, 1980.

    Google Scholar 

  8. Y. Sakakibara, K. Furuya, K. Utaka and Y. Suematsu, “Single-mode oscillation under high-sped direct modulation in GalnAsP/InP integrated twinguide lasers with distributed-Bragg-reflectors,” Electron. Lett., Vol. 16, No. 12, pp. 456–458, June 1980.

    Article  ADS  Google Scholar 

  9. O. Mikami, “1.55μm GalnAsP/InP distributed feedback lasers”, Japan. J. Appl. Phys., vol. 20, No. 7, pp. L488–L490, July 1981.

    Article  ADS  Google Scholar 

  10. K. Utaka, S. Akiba, K. Sakai and M. Matsushima, “Room-temperature CW operation of distributed-feedback buried-heterostructure InGaAsP/InP lasers emitting at l.57μm,” Electron. Lett., vol. 17, No. 25/26, pp. 961–963, Dec. 1981.

    Article  Google Scholar 

  11. T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, U. Suzuki and T. Ikegami, “CW operation of DFB-BH GalnAsP/InP lasers in 1. 5μm wavelength region,” Electron. Lett., vol. 18, No. 1, pp. 27–28, Jan. 1982.

    Article  Google Scholar 

  12. Y. Abe, K. Kishino, Y. Suematsu and S. Arai, “GalnAsP/InP integrated laser with butt-jointed distributed-Bragg-reflector waveguide,” Electron. Lett., vol. 17, No. 25/26, pp. 945–947, Dec. 1981.

    Article  Google Scholar 

  13. Y. Suematsu, S. Arai and K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector”, IEEE J. Lightwave Tech., vol. LT-1, No. l, pp. 161–176, Mar. 1983.

    Article  ADS  Google Scholar 

  14. H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett., vol. 18, pp. 152–154, 1971.

    Article  ADS  Google Scholar 

  15. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys., vol. 43, No. 5, pp. 2327–2335, May 1972.

    Article  ADS  Google Scholar 

  16. M. Nakamura, A. Yariv, H. W. Yen, S. Smoke and H. L. Garrin, “Optically pumped GaAs surface laser with corrugation feedback,” Appl. Phys. Lett., vol. 22, pp. 515–516, 1973.

    Article  ADS  Google Scholar 

  17. C. V. Shank, R. V. Schmidt, and B. I. Miller, “Double-heterostructure GaAs distributed-feed back laser,” Appl. Phys. Lett., vol. 25, No. 4, pp. 200–201, Aug. 1974.

    Article  ADS  Google Scholar 

  18. D. R. Scifres, R. D. Burnham, and W. Streifer, “Distributed-feedback single heterojunction GaAs diode laser,” Appl. Phys. Lett, vol. 25, No. 4, pp. 203–206, Aug. 1974.

    Article  ADS  Google Scholar 

  19. H. M. Stoll and D. H. Seib, “Distributed feedback GaAs homojunction injection laser”, Appl. Opt., vol. 13, No. 9, pp. 1981–1982, Sept. 1974.

    Article  ADS  Google Scholar 

  20. M. Nakamura, K. Aiki, J. Umeda, A. Yariv, H. W. Yen, and T. Morikawa, “GaAs-Ga1-xAlxAs double heterostructure distributed feedback diode lasers,” Appl. Phys. Lett., vol. 25. No. 9, pp. 487–488, Nov. 1974.

    Article  ADS  Google Scholar 

  21. D. B. Anderson, R. R. August, and J. E. Coker, “Distributed-feedback double-heterostructure GaAs injection laser with fundamental grating,” Appl. Opt., vol. 13, No. 12, pp. 2742–2744, Dec. 1974.

    Article  ADS  Google Scholar 

  22. K. Ishii, “Emission properties of AlGaAs semiconductor lasers below and above threshold,” Bachelor Thesis, Tokyo Institute of Technology, 1974.

    Google Scholar 

  23. Y. Suematsu, M. Yamada and H. Hayashi, “A multi-hetero AlGaAs laser with integrated twin guide”, Proc. IEEE, Vol. 63, p. 208, 1975.

    Article  ADS  Google Scholar 

  24. I. P. Kaminow and H. P. Weber, “Poly (Methyl Methacrylate) Dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. vol. 18, pp. 497–499, 1971.

    Article  ADS  Google Scholar 

  25. F. K. Reinhart, R. A. Logan, and C. V. Shank, “GaAs-AlxGa1-xAs injection lasers with distributed Bragg reflectors,” Appl. Phys. Lett., vol. 27, No. l, pp. 45–48, July 1975.

    Article  ADS  Google Scholar 

  26. W. T. Tsang and S. Wang, “GaAs-Ga1-xAlxAs double-heterostructure injection lasers with distributed Bragg reflectors,” Appl. Phys. Lett., vol. 28, No. 10, pp. 596–598, May 1976.

    Article  ADS  Google Scholar 

  27. N. Matsumoto and K. Kumabe, “Influence of structure Chapaumeters on the lasing characteristics of semiconductor lasers,” Japan. J. Appl. Phys., vol. 18, No. 2, pp. 321–332, Feb. 1979.

    Article  ADS  Google Scholar 

  28. T. Kuroda, S. Yamanishi, M. Nakamura and J. Umeda, “Channeled-substrate-planar structure distributed feedback semiconductor lasers,” Appl. Phys. Lett., vol. 33, no. 2, pp. 173–174, July 1978.

    Article  ADS  Google Scholar 

  29. W. Streifer, R. D. Burnham and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” J. Quantum Electron., vol. QE-11, No. 4, pp. 154–161, Apr. 1975.

    Article  ADS  Google Scholar 

  30. H. A. Haus and C. V. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron., vol. QE-12, No. 9, 1976.

    Article  Google Scholar 

  31. A. Suzuki and K. Tada, “Theory and experiment on distributed feedback lasers with chirped grating,” Proc. of SPIE, vol. 239, Guided-Wave Optical and Surface Accoustic Wave Devices, Systems and Applications, San Diego, pp. 10–18, 1980.

    Google Scholar 

  32. W. T. Tsang, N. A. Olsson, R. A. Linke, R. A. Logan “l.5μm wavelength GalnAsP C3 lasers single-frequency operation and wide band frequency tuning,” Electron. Lett., vol. 19, No. 11, pp. 415–416, May 1983.

    Article  Google Scholar 

  33. K. Iga and Y. Takahashi, “An analysis on single wavelength oscillation of semiconductor lasers of high speed direct pulse modulation,” Trans. IECE Japan, vol. E-61, no. 9, pp. 685–689, Sept. 1978.

    Google Scholar 

  34. F. Koyama, Y. Suematsu, S. Arai, and T. Tanbunek, “1.5–1.6μm GalnAsP/InP dynamic-single-mode (DSM) lasers with distributed Bragg reflector,” IEEE J. Quantum Electron., vol. QE-19, No. 6, June 1983.

    Google Scholar 

  35. Y. Itaya, T. Matsuoka, K. Kuroiwa and T. Ikegami, “Longitudinal mode spectra of l. 5μm GalnAsP/InP distributed feedback lasers”, 4th Integrated Optics and Optical Fiber Comm. Conf. (IOOC), Tokyo, 28B1–1, 1983.

    Google Scholar 

  36. S. Akiba, K. Taka, K. Sakai and Y. Matsushima, “Effect of mirror facet on lasing characteristics of InGaAsP/InP DFB lasers”, ibid, 28B1–2, 1983.

    Google Scholar 

  37. S. Akiba, K. Utaka, K. Sakai and Y. Matsushima, “Low-Threshold-Current Distributed-Feedback InGaAsP/InP CW Lasers”, Electron. Lett., vol. 18, No. 2, pp. 77–78, 1982.

    Article  ADS  Google Scholar 

  38. Y. Itaya, T. Matsuoka, Y. Nakano, Y. Suzuki, K. Kuroiwa and T. Ikegami, “New 1.5μm Wavelength GalnAsP/InP Distributed Feedback Laser”, Electron. Lett., vol. 18, No. 23, pp. 1006–1007, 1982.

    Article  Google Scholar 

  39. L. D. Westbrook, A. W. Nelson, P. J. Fiddyment and J. S. Evans, “Continuous-Wave Operation of 15”, May 1972.

    Google Scholar 

  40. H. Katsuda, T. Watanabe, S. Suzaki, T. Takahashi, T. Nomura, T. Shimme, ‘Oscillation characteristics of distributed feed back laser in 1.5μm wavelength region’, Nat. Conv. Rec. of IECE Jpn. 1020, March, 1984.

    Google Scholar 

  41. K. Fujiwara, M. Morimoto, T. Tanahashi, H. Ishikawa, H. Imai, ‘1.55μm DFB-BH laser’, Nat. Conv. Rec. of Jpn. Appl. Phys., 1A-M-10, March, 1984.

    Google Scholar 

  42. T. L. Koch, T. J. Bridges, E. G. Burkhardt, R. A. Logan, L. F. Johnson, L. A. Coldren, P. J. Corvini, and W. T. Tsang, “1. 55μm InGaAsP vapor phase transported buried heterostructure distributed feedback lasers,” 9th IEEE Int. Semiconductor Laser Conf., Post deadline paper No. 6, Rio de Janeiro, Aug. 1984.

    Google Scholar 

  43. N. Eda, K. Sekartedjo, K. Furuya, and Y. Suematsu, ‘Dynamic single mode characteristics of phase shifted DFB laser’, Nat. Conv. Rec. of IECE Jpn. 984, March, 1984.

    Google Scholar 

  44. K. Sekartedjo, N. Eda, K. Furuya, Y. Suematsu, F. Koyama, and T. Tanbun-ek, “1.5μm phase-shifted DFB lasers for single-mode operation,” Electron. Lett. vol. 20, pp. 80–81, 1984.

    Article  Google Scholar 

  45. F. Koyama, Y. Suematsu, K. Kojima and K. Furuya, “1.5μm phase adjusted active distributed reflector laser for complete dynamic single mode operation”, to be appeared in Electron. Lett.

    Google Scholar 

  46. Y. Itaya, K. Wakita, G. Motosugi, and T. Ikegami, “Phase control by coating in 1.5μm DFB lasers,” 9th IEEE Int. Semiconductor Laser Conf., E-1, Rio de Janeiro, Aug. 1984.

    Google Scholar 

  47. F. Koyama, S. Arai, Y. Suematsu, and K. Kishino, ‘Dynamic spectral width of rapidly modulated 1.58μm GalnAsP/InP buried-heterostructure distributed-Bragg-reflector integrated-twin-guide lasers,’ Electron. Lett., vol. 17, no. 25/26, pp. 938–940, Dec. 1981

    Article  ADS  Google Scholar 

  48. M. Kitamura, M. Seki, M. Yamaguchi, I. Mito, Ke. Kobayashi, and Ko. Kobayashi, “High-Power Single-Longitudinal-Mode Operation of l. 3μm DFB-DC-PBH LD,” Electron. Lett., Vol. 19, No. 20, pp. 840–841, 1983.

    Article  Google Scholar 

  49. Y. Suzuki, H. Nagai, Y. Noguchi, T. Matsuoka, and K. Kurumada, “High power SLM operation of l. 3μm InP/GalnAsP DFB LD with doubly buried heterostructure on p-type InP substrate,” Electron. Lett., vol. 20, No. 21, pp. 881–882, Oct. 1984.

    Article  Google Scholar 

  50. H. Okuda, Y. Hirayama, J. Kinoshita, H. Furuyama and Y. Uematsu, “High-Quality l. 3μm GalnAsP/InP BH-DFB Lasers with First-Order Gratings”, Electron. Lett., vol. 19, No. 22, pp. 941–943, 1983.

    Article  ADS  Google Scholar 

  51. H. Asahi, Y. Kawamura, Y. Noguchi, T. Matsuoka and H. Nagai, “Hybrid LPE/MBE-Grown InGaAsP/InP DBR Lasers”, Electron. Lett., vol. 19, No. 14, pp. 507–508, 1983.

    Article  Google Scholar 

  52. B. Broberg, F. Koyama, Y. Tohmori, and Y. Suematsu, “1.53μm DFB lasers by mass transport,” Electron. Lett., vol. 20, No. 17, pp. 692–694, Aug. 1984.

    Article  Google Scholar 

  53. G. Motosugi, Y. Nakao, Y. Yoshikuni, and T. Ikegami, ‘Aging characteristics of InGaAsP/InP DFB lasers’, 9th European Conference on Optical Commun., pp. 43–46, Geneva Oct. 1983.

    Google Scholar 

  54. S. Akiba, K. Utaka, K. Sakai, and Y. Matsushima, ‘Aging test of 1.5μm InGaAsP/InP DFB laser’, Nat. Conv. Rec. of Jpn. Appl. Phys., 1p-M-10, Apr. 1984.

    Google Scholar 

  55. T. Ikegami, K. Kuroiwa, Y. Itaya, S. Shinohara, K. Hagimoto, and N. Inagaki, “1.5μm transmission experiment with distributed feedback laser,” 8th European Conf. Opt. Fiber Commun., Cannes, 1982.

    Google Scholar 

  56. B. L. Kasper, R. A. Linke, K. L. Walker, L. G. Cohen, T. L. Koch, T. J. Bridges, E. G. Burkhardt, R. A. Logan, R. W. Dawson, and J. C. Campbell, ‘A 130km transmission experiment at 2Gb/s using silica-core fiber and a vapor phase transported DFB laser’, ECOC’84 post deadline papers, PD-6, Sep. 1984

    Google Scholar 

  57. Y. Ichihashi, H. Nagai, T. Miya, and Y. Miyajima, “Transmission experiment over 134km of single-mode fiber at 445.8Mb/s,”, IOOC’83, Post deadline paper 29C5–2, Tokyo, July 1983.

    Google Scholar 

  58. V. J. Mazurczyk, N. S. Bergano, R. E. Wagner, K. L. Walker, N. A. Olsson, L. G. Cohen, R. A. Logan, and J. C. Campbell, “420Mb/s transmission through 203km using sillica core fiber and a DFB laser,” ECOC’84, Post deadline paper PD-7, Sept. 1984.

    Google Scholar 

  59. S. Takahashi, H. Tsushima, F. Koyama, and Y. Suematsu, ‘Single mode condition of pulsed modulated semiconductor lasers’, Nat. Conv. Rec. of IECE Jpn. 981, March, 1984.

    Google Scholar 

  60. F. Koyama, and Y. Suematsu, ‘Analysis of reflection noise in dynamic single mode lasers’, Nat. Conv. Rec. of Jpn. Appl. Phys., 29p-M-ll, March, 1984.

    Google Scholar 

  61. T. Tanbun-ek, S. Suzaki, F. Koyama, S. Arai and Y. Suematsu, “Static lasing characteristic of CW operation of 1.5–1.6μm GalnAsP/InP”

    Google Scholar 

  62. F. Koyama, and Y. Suematsu, ‘Dynamic wavelength shift of dynamic single mode (DSM) lasers and its influence on the transmission bandwidth of single mode fibers’, Tech. Group Meeting of IECE Jpn. OQE 84–71 pp. 23–30 July 1984.

    Google Scholar 

  63. F. Koyama, T. Tanbunek, S. Arai, S. Wang, Y. Suematsu, and K. Furuya, ‘Suppression of intensity fluctuation of a longitudinal mode in directly modulated GalnAsP/InP dynamic-single-mode laser’, Electron. Lett. vol. 19, no. 9, pp325–327, Apr. 1983.

    Article  Google Scholar 

  64. S. Kawakami and J. Nishizawa, “An optical waveguide with optimum distribution of the refractive index with reference to waveform distortion,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-16, No. 10, pp. 814–818, Oct. 1968.

    Article  ADS  Google Scholar 

  65. D. Marcuse, “Losses and impulse response of a Chapaubolic index fiber with random bends,” Bell Syst. Tech. J., vol. 52, pp. 1423–1437, Oct. 1973.

    Google Scholar 

  66. R. Olshansky and D. B. Keck, “Pulse broadening in graded-index optical fibers,” Appl. Opt., vol. 15, pp. 483–491, Feb. 1976.

    Article  ADS  Google Scholar 

  67. M. Eve, “Multipath time dispersion of an optical network,” Opt. Quantum Electron., vol. 10, pp. 41–51, Jan. 1978.

    Article  Google Scholar 

  68. M. Nakahara, S. Sudo, N. Inagaki, K. Yoshida, S. Shibata, K. Kokura, and T. Kuroha, “Ultra wide bandwidth VAD Fiber,” Electron. Lett., vol. 16, No. 10, pp. 391–392, May 1980.

    Article  Google Scholar 

  69. K. Okamoto, T. Edahiro, and M. Nakahara, “Transmission characteristics of VAD multimode optical fibers,” Appl. Opt., vol. 20, No. 13, pp. 2314–2318, July 1981.

    Article  ADS  Google Scholar 

  70. K. Ogura, S. Shibutani, K. Yoshida, S. Sudo, and M. Nakahara, “Fabrication of side-band VAD optical fiber,” National Convention on Optical and Ratio Wave Section, Inst. Electron. Comm. Engrg. Japan, 316, Oct. 1980.

    Google Scholar 

  71. A. J. Ritger and F. T. Stone, “Improving the bandwidth of optical fibers made using modified CVD,” Topical Meeting on Opt. Fiber Commun., Phoenix, TUEE4, Apr. 1982.

    Google Scholar 

  72. F. Kapron, “Maximum information capacity of fiber-optic waveguide,” Electron. Lett., vol. 13, pp. 96–97, Feb. 1977.

    Article  ADS  Google Scholar 

  73. W. A. Gambling and H. Matsumura, “Propagaion in radially-homogeneous single-mode fibere,” Opt. Quantum Electron., vol. 10, pp. 31–40, Jan. 1978.

    Article  ADS  Google Scholar 

  74. A. W. Snyder and R. A. Sammut, “Fundamental (HE1l) modes of graded optical fibers,” J. Opt. Soc. Amer., vol. 69, pp. 1663–1671, Dec. 1979.

    Article  ADS  Google Scholar 

  75. H. Tsuchiya and N. Imoto, “Single mode fiber delay equalization and baseband response,” IECE Japan Eng. Res. Rep. OQE 79–22, May 1979.

    Google Scholar 

  76. L. G. Cohen and C. Lin, “Pulse delay measurements in the zero material dispersion wavelength region for optical fibers,” Appl. Opt., vol. 12, pp. 3136–3139, Dec. 1977.

    Article  ADS  Google Scholar 

  77. Y. Okano, K. Nakagawa, and T. Ito, ‘Laser mode partition noise evaluation for optical fiber transmission’, IEEE Trans. Commun., vol. com-28, no. 2, pp. 238–243, Feb. 1980.

    Article  Google Scholar 

  78. K. Ogawa, and R. S. Vodhanel, ‘Analysis and measurement of mode partition noise,’ Topical Meeting on Opt. Fiber Commun., Phoenix, THDD4, Apr. 1982

    Google Scholar 

  79. R. A. Bergh, C. C. Cutler, H. C. Lefevre, S. A. Newton, G. A. Pavlath, and H. J. Shaw, ‘The all fiber gyroscope: A practical alternative for rotation sensing,’ Topical Meeting on Integrated and Guided Wave Optics, pacific Grove, WB-2, Jan. 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suematsu, Y. (1985). Progress in Integrated Optics Lasers. In: Nolting, HP.J., Ulrich, R. (eds) Integrated Optics. Springer Series in Optical Sciences, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39452-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39452-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13571-6

  • Online ISBN: 978-3-540-39452-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics