Skip to main content

Developing and Testing Methods for Microarray Data Analysis Using an Artificial Life Framework

  • Conference paper
Advances in Artificial Life (ECAL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2801))

Included in the following conference series:

Abstract

Microarray technology has resulted in large sets of gene expression data. Using these data to derive knowledge about the underlying mechanisms that control gene expression dynamics has become an important challenge. Adequate models of the fundamental principles of gene regulation, such as Artificial Life models of regulatory networks, are pivotal for progress in this area.

In this contribution, we present a framework for simulating microarray gene expression experiments. Within this framework, artificial regulatory networks with a simple regulon structure are generated. Simulated expression profiles are obtained from these networks under a series of different environmental conditions. The expression profiles show a complex diversity. Consequently, success in using hierarchical clustering to detect groups of genes which form a regulon proves to depend strongly on the method which is used to quantify similarity between expression profiles. When measurements are noisy, even clusters of identically regulated genes are surprisingly difficult to detect. Finally, we suggest cluster support, a method based on overlaying multiple clustering trees, to find out which clusters in a tree are biologically significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schneider, T.D., Stormo, G.D., Gold, L.: Information content of binding sites on nucleotide sequences. J.Mol.Biol. 188, 415–431 (1986)

    Article  Google Scholar 

  2. Kim, J.T., Martinetz, T., Polani, D.: Bioinformatic principles underlying the information content of transcription factor binding sites. Journal of Theoretical Biology 220, 529–544 (2003)

    Article  MathSciNet  Google Scholar 

  3. Kauffman, S.A., Weinberger, E.W.: The NK model of rugged fitness landscapes and its application to maturation of the immune response. J. Theor. Biol. 141, 211–245 (1989)

    Article  Google Scholar 

  4. von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000)

    Article  Google Scholar 

  5. Reil, T.: Dynamics of gene expression in an artificial genome – implications for biological and artificial ontogeny. In: Floreano, D., Nicoud, J.D., Mondada, F. (eds.) Advances in Artificial Life. LNCS (LNAI), pp. 457–466. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Kauffman, S.A.: Requirements for evolvability in complex systems: Orderly dynamics and frozen components. Physica D 42, 135–152 (1990)

    Article  Google Scholar 

  7. Bornholdt, S., Sneppen, K.: Neutral mutations and punctuated equilibrium in evolving genetic networks. Physical Review Letters 81, 236–239 (1998)

    Article  Google Scholar 

  8. Golub, T., Stonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531–536 (1999)

    Article  Google Scholar 

  9. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  10. Michaels, G.S., Carr, D.B., Askenazi, M., Fuhrmann, S., Wen, X., Somogyi, R.: Cluster analysis and data visualization of large-scale gene expression data. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Biocomputing 1998, pp. 42–53. World Scientific, Singapore (1998)

    Google Scholar 

  11. Akutsu, T., Miyano, S., Kuhara, S.: Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16, 727–734 (2000)

    Article  Google Scholar 

  12. Morohashi, M., Kitano, H.: Identifying gene regulatory networks from time series expression data by in silicio screening and sampling. In: Floreano, D., Nicoud, J.D., Mondada, F. (eds.) Advances in Artificial Life. LNCS (LNAI), pp. 477–486. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Repsilber, D., Liljenström, H., Andersson, S.G.: Reverse engineering of regulatory networks: Simulation studies on a genetic algorithm approach for ranking hypotheses. BioSystems 66, 31–41 (2002)

    Article  Google Scholar 

  14. Kim, J.T.: transsys: A generic formalism for modelling regulatory networks in morphogenesis. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 242–251. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. van Rossum, G., Drake, F.L.: Python reference manual (2002), http://www.python.org/

  16. Ihaka, R., Gentleman, R.: R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5, 299–314 (1996)

    Article  Google Scholar 

  17. Kim, J.T.: The transsys home page (2003), http://www.inb.uni-luebeck.de/transsys/

  18. Gasch, A.P., Spellmann, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M., Storz, G., Botstein, D., Brown, P.O.: Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell 11, 4241–4257 (2000)

    Google Scholar 

  19. Felsenstein, J.: PHYLIP – phylogeny inference package, version 3.5c (1993), http://evolution.genetics.washington.edu/phylip.html

  20. Quackenbush, J.: Computational analysis of microarray data. Nature Reviews Genetics 2, 418–426 (2001)

    Article  Google Scholar 

  21. Heyer, L., Kruglyak, S., Yooseph, S.: Exploring expression data: identification and analysis of coexpressed genes. Genome Res. 9, 1106–1115 (1999)

    Article  Google Scholar 

  22. Jain, A., Moreau, J.: Bootstrap techniques in cluster analysis. Pattern Recognition 20, 547–568 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Repsilber, D., Kim, J.T. (2003). Developing and Testing Methods for Microarray Data Analysis Using an Artificial Life Framework. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds) Advances in Artificial Life. ECAL 2003. Lecture Notes in Computer Science(), vol 2801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39432-7_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39432-7_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20057-4

  • Online ISBN: 978-3-540-39432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics