Skip to main content

Measuring the Dynamics of Artificial Evolution

  • Conference paper
Advances in Artificial Life (ECAL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2801))

Included in the following conference series:

Abstract

This paper presents results of measuring evolution in a simple ALife system. Interpretation of these results is based on the notion of dynamical systems. This approach enables the discovery of periods of high evolutionary activity, which can be treated as evolutionary transitions. Attempts were also made to locate possible cycles of trajectory in the genome phase space, and it was concluded that there were no such cycles. These results demonstrate the usefulness of a dynamical systems approach in analyzing the dynamics of artificial evolution and provide suggestions for further development.

This work was supported by the Russian Fund for Basic Research, project 02-06-80435.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedau, M.A., Packard, N.H.: Measurement of evolutionary activity, teleology, and life. In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Proceedings of Artificial Life II, pp. 431–461. Addison-Wesley, Redwood City (1992)

    Google Scholar 

  2. Bedau, M.A., Snyder, E., Packard, N.H.: A classification of long-term evolutionary dynamics. In: Adami, C., Belew, R., Kitano, H., Taylor, C. (eds.) Proceedings of Artificial Life VI, Los Angeles, pp. 228–237. MIT Press, Cambridge (1998)

    Google Scholar 

  3. Channon, A.D.: Passing the ALife test: Activity statistics classify evolution in Geb as unbounded. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, p. 417. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Pachepsky, E., Taylor, T., Jones, S.: Mutualism promotes diversity and stability in a simple artificial ecosystem. Artificial Life 8(1), 5–24 (2002)

    Article  Google Scholar 

  5. Adami, C., Ofria, C., Collier, T.C.: Evolution of biological complexity. Proc. Nat. Acad. Sci. 97, 4463–4468 (2000)

    Article  Google Scholar 

  6. Adami, C.: Introduction to Artificial Life. Springer, New York (1998)

    MATH  Google Scholar 

  7. Nehaniv, C.L.: Measuring evolvability as the rate of complexity increase. In: Maley, C.C., Boudreau, E. (eds.) Artificial Life VII Workshop Proceedings, pp. 55–57 (2000)

    Google Scholar 

  8. Nehaniv, C.L., Rhodes, J.L.: The evolution and understanding of biological complexity from an algebraic perspective. Artificial Life 6(1), 45–67 (2000)

    Article  Google Scholar 

  9. Cliff, D., Miller, G.F.: Tracking the Red Queen: Measurements of adaptive progress in coevolutionary simulations. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 200–218. Springer, Heidelberg (1995)

    Google Scholar 

  10. van Nimwegen, E., Crutchfield, J.P., Mitchell, M.: Statistical Dynamics of the Royal Road Genetic Algorithm. Theoretical Computer Science 229 (1999)

    Google Scholar 

  11. Nix, A.E., Vose, M.D.: Modeling genetic algorithms with Markov chains. Annals of Mathematics and Artificial Intelligence 5 (1991)

    Google Scholar 

  12. Vose, M.D., Liepins, G.E.: Punctuated equilibria in genetic search. Complex Systems 5 (1991)

    Google Scholar 

  13. Prugel-Bennett, A., Shapiro, J.L.: Analysis of genetic algorithms using statistical mechanics. Physical Review Letters 72(9), 1305–1309 (1994)

    Article  Google Scholar 

  14. Prugel-Bennett, A., Shapiro, J.L.: The dynamics of a genetic algorithm in simple random Ising systems. Physica D 104(1), 75–114 (1997)

    Article  MathSciNet  Google Scholar 

  15. Rattray, M., Shapiro, J.L.: The dynamics of a genetic algorithm for a simple learning problem. J. of Phys. A 29(23), 7451–7473 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Riziki, M.M., Conrad, M.: Computing the Theory of Evolution. Physica D 22, 83–99 (1986)

    Article  MathSciNet  Google Scholar 

  17. Packard, N.: Intrinsic adaptation in a simple model for evolution. In: Langton, C.G. (ed.) Artificial life, pp. 141–155. Addison-Wesley, Redwood City (1989)

    Google Scholar 

  18. Ackley, D., Littman, M.: Interactions between learning and evolution. In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, pp. 487–509. Addison-Wesley, Reading (1992)

    Google Scholar 

  19. Yaeger, L.: Computational Genetics, Physiology, Learning, Vision, and Behavior or PolyWord: Life in a New Context. In: Langton, C.G. (ed.) Artificial Life III, pp. 263–298. Addison-Wesley, Reading (1994)

    Google Scholar 

  20. Crutchfield, J.P.: When Evolution is Revolution – Origins of Innovation. In: James, P., Crutchfield, J.P., Schuster, P. (eds.) Evolutionary Dynamics: Exploring the Interplayof Selection, Accident, Neutrality, and Function, pp. 101–134. Oxford University Press, Oxford (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burtsev, M.S. (2003). Measuring the Dynamics of Artificial Evolution. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds) Advances in Artificial Life. ECAL 2003. Lecture Notes in Computer Science(), vol 2801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39432-7_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39432-7_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20057-4

  • Online ISBN: 978-3-540-39432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics