Skip to main content

Does the Red Queen Reign in the Kingdom of Digital Organisms?

  • Conference paper
Advances in Artificial Life (ECAL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2801))

Included in the following conference series:

Abstract

I investigate the competition dynamics between two identical clones of digital organisms, for three sets of clones taken from different locations in the fitness landscape. When the clones are taken from the base of a fitness peak, such that beneficial mutations are abundant, then both gain in fitness during the competition (Red Queen effect), until eventually one clone drives the other to extinction. When beneficial mutations are rare or completely absent, on the other hand, then either the clone that finds a beneficial mutation first wins, or the clone that loses the highest-fitness mutant first loses the competition. The time until one of the two strains dies out is in general shorter in the Red Queen case than in the other cases. I discuss the relevance of my findings for competition studies with RNA viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarke, D.K., Duarte, E.A., Elena, S.F., Moya, A., Domingo, E., Holland, J.: The red queen reigns in the kingdom of RNA viruses. Proc. Natl. Acad. Sci. USA 91, 4821–4824 (1994)

    Article  Google Scholar 

  2. Quer, J., Huerta, R., Novella, I.S., Tsimring, L., Domingo, E., Holland, J.J.: Reproducible nonlinear population dynamics and critical points during replicative competitions of RNA virus quasispecies. J. Mol. Biol. 264, 465–471 (1996)

    Article  Google Scholar 

  3. Hardin, G.: The competitive exclusion principle. Science 131, 1292–1297 (1960)

    Article  Google Scholar 

  4. van Valen, L.: A new evolutionary law. Evol. Theory 1, 1–30 (1973)

    Google Scholar 

  5. Ridley, M.: The Red Queen: Sex and the Evolution of Human Nature. MacMillan, NYC (1994)

    Google Scholar 

  6. Solé, R.V., Ferrer, R., González-García, I., Quer, J., Domingo, E.: Red queen dynamics, competition and critical points in a model of RNA virus quasispecies. J. theor. Biol. 198, 47–59 (1999)

    Article  Google Scholar 

  7. Kauffman, S.: Origins of Order. Oxford University Press, Oxford (1990)

    Google Scholar 

  8. Eigen, M., Schuster, P.: The Hypercycle–A Principle of Natural Self- Organization. Springer, Berlin (1979)

    Google Scholar 

  9. Eigen, M., McCaskill, J., Schuster, P.: Molecular quasi-species. J. Phys. Chem. 92, 6881–6891 (1988)

    Article  Google Scholar 

  10. Tsimring, L.S., Levine, H., Kessler, D.A.: RNA virus evolution via a fitnessspace model. Phys. Rev. Lett. 76, 4440–4443 (1996)

    Article  Google Scholar 

  11. Rouzine, I.M., Wakeley, J., Coffin, J.M.: The solitary wave of asexual evolution. Proc. Natl. Acad. Sci. USA 100, 587–592 (2003)

    Article  Google Scholar 

  12. Novella, I.S., Duarte, E.A., Elena, S.F., Moya, A., Domingo, E., Holland, J.J.: Exponential increases of RNA virus fitness during large population transmissions. Proc. Natl. Acad. Sci. USA 92, 5841–5844 (1995)

    Article  Google Scholar 

  13. Lenski, R.E., Travisano, M.: Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Nat. Acad. Sci. USA 91, 6808–6814 (1994)

    Article  Google Scholar 

  14. Elena, S.F., Cooper, V.S., Lenski, R.E.: Punctuated evolution caused by selection of rare beneficial mutations. Science 272, 1802–1804 (1996)

    Article  Google Scholar 

  15. Fontana, W., Schuster, P.: Continuity in evolution: On the nature of transitions. Nature 280, 1451–1455 (1998)

    Google Scholar 

  16. van Nimwegen, E., Crutchfield, J.P., Mitchell, M.: Statistical dynamics of the royal road genetic algorithm. Theoretical Computer Science 229, 41–102 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wilke, C.O., Adami, C.: The biology of digital organisms. Trends. Ecol. Evol. 17, 528–532 (2002)

    Article  Google Scholar 

  18. Ray, T.: An approach to the synthesis of life. In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, pp. 371–408. Addison-Wesley, Reading (1991)

    Google Scholar 

  19. Adami, C.: Introduction to Artificial Life. Springer, New York (1998)

    MATH  Google Scholar 

  20. Lenski, R.E., Ofria, C., Collier, T.C., Adami, C.: Genome complexity, robustness and genetic interactions in digital organisms. Nature 400, 661–664 (1999)

    Article  Google Scholar 

  21. Adami, C., Ofria, C., Collier, T.C.: Evolution of biological complexity. Proc. Natl. Acad. Sci. USA 97, 4463–4468 (2000)

    Article  Google Scholar 

  22. Wilke, C.O., Wang, J.L., Ofria, C., Lenski, R.E., Adami, C.: Evolution of digital organisms at high mutation rate leads to survival of the flattest. Nature 412, 331–333 (2001)

    Article  Google Scholar 

  23. Kingman, J.F.C.: On the genealogy of large populations. J. Appl. Prob. 19A, 27–43 (1982)

    Article  MathSciNet  Google Scholar 

  24. Griffiths, R.C.: Lines of descent in the diffusion-approximation of neutral Wright- Fisher models. Theor. Pop. Biol. 17, 37–50 (1980)

    Article  MATH  Google Scholar 

  25. Donnelly, P.: The transient behaviour of the Moran model in population genetics. Math. Proc. Cambridge Philos. Soc. 95, 349–358 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tavaré, S.: Line-of-descent and genealogical processes, and their applications in population genetics models. Theor. Pop. Biol. 26, 119–164 (1984)

    Article  MATH  Google Scholar 

  27. Lynch, M., Gabriel, W.: Mutation load and the survival of small populations. Evolution 44, 1725–1737 (1990)

    Article  Google Scholar 

  28. Crow, J.F., Kimura, M.: An Introduction to Population Genetics Theory. Harper & Row, New York (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilke, C.O. (2003). Does the Red Queen Reign in the Kingdom of Digital Organisms?. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds) Advances in Artificial Life. ECAL 2003. Lecture Notes in Computer Science(), vol 2801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39432-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39432-7_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20057-4

  • Online ISBN: 978-3-540-39432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics