Advertisement

Compression of Arbitrary Mesh Data Using Subdivision Surfaces

  • Hiroshi Kawaharada
  • Kokichi Sugihara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2768)

Abstract

This paper proposes a new method for mesh data compression. In this method, the original mesh is fitted by a subdivision surface. Thus, our method approximates irregular meshes to semi-regular meshes. The volume bounded by the mesh data is first partitioned into star-shaped volumes, and then each star-shaped volume is approximated. For the approximation we establish a nearly one-to-one correspondence between the resulting vertices of the subdivision surface and the vertices of the original mesh using rays emanating at a kernel point, and fit the surface by the least square method. The resulting approximated data preserves rough shape of the original mesh. Our method can be considered as an approach to a multiresolution mesh. Moreover, our method has advantages for interactively deformed meshes.

Keywords

Compression Rate Multiresolution Analysis Subdivision Surface Original Mesh Vertex Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Capell, S., Green, S., Curless, B., Duchamp, T., Popovic, Z.: A multiresolution framework for dynamic deformations. In: SIGGRAPH 2002 Proceedings, pp. 41–47. ACM, New York (2002)Google Scholar
  2. 2.
    Grinspun, E., Krysl, P., Schroder, P.: Charms: A simple framework for adaptive simulation. In: SIGGRAPH 2002 Proceedings, pp. 281–290. ACM, New York (2002)CrossRefGoogle Scholar
  3. 3.
    Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets for Computer Graphics: Theory and Applications. Morgan Kaufmann Publishers, San Francisco (1996)Google Scholar
  4. 4.
    Warren, J., Weimer, H.: Subdivision Methods for Geometric Design: A Constructive Approach. Morgan Kaufmann Publishers, San Francisco (1995)Google Scholar
  5. 5.
    Debunne, G., Desbrun, M., Cani, M.P., Barr, A.H.: Dynamic real-time deformations using space and time adaptive sampling. In: SIGGRAPH 2001 Proceedings, pp. 31–36. ACM, New York (2001)CrossRefGoogle Scholar
  6. 6.
    Gandoin, P.M., Devillers, O.: Progressive lossless compression of arbitrary simplicial complexes. In: SIGGRAPH 2002 Proceedings, pp. 372–379. ACM, New York (2002)CrossRefGoogle Scholar
  7. 7.
    Lindstrom, P.: Out-of-core simplification of large polygonal models. In: SIGGRAPH 2000 Proceedings, pp. 259–262. ACM, New York (2000)CrossRefGoogle Scholar
  8. 8.
    Szeliski, R., Terzopoulos, D.: From splines to fractals. In: SIGGRAPH 1989 Proceedings, pp. 51–60. ACM, New York (1989)CrossRefGoogle Scholar
  9. 9.
    Terzopoulos, D., Metaxas, D.: Dynamic 3d models with local and global deformations: Deformable superquadrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 703–714 (1991)CrossRefGoogle Scholar
  10. 10.
    Vemuri, B.C., Mandal, C., Lai, S.H.: A fast gibbs sampler for synthesizing constrained fractals. IEEE Transactions on Visualization and Computer Graphics 3, 337–351 (1997)CrossRefGoogle Scholar
  11. 11.
    Vemuri, B.C., Radisavljevic, A.: Multiresolution stochastic hybrid space models with fractal priors. ACM Transactions on Graphics 13, 177–207 (1994)zbMATHCrossRefGoogle Scholar
  12. 12.
    Hoppe, H., Derose, T., Duchamp, T., Mcdonald, J., Stuetzle, W.: Mesh optimization. In: SIGGRAPH 1993 Proceedings, pp. 19–26. ACM, New York (1993)CrossRefGoogle Scholar
  13. 13.
    Hoppe, H.: Progressive meshes. In: SIGGRAPH 1996 Proceedings, pp. 99–108. ACM, New York (1996)CrossRefGoogle Scholar
  14. 14.
    Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive meshes. In: SIGGRAPH 2001 Proceedings, pp. 409–416. ACM, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Hoppe, H., Derose, T., Duchamp, T., Halsted, M.: Piecewise smooth surface reconstruction. In: SIGGRAPH 1994 Proceedings, pp. 295–302. ACM, New York (1994)CrossRefGoogle Scholar
  16. 16.
    Lee, A., Moreton, H., Hoppe, H.: Displaced subdivision surface. In: SIGGRAPH 2000 Proceedings, pp. 85–94. ACM, New York (2000)CrossRefGoogle Scholar
  17. 17.
    Derose, T., Kass, M., Truong, T.: Subdivision surfaces in character animation. In: SIGGRAPH 1998 Proceedings, pp. 85–94. ACM, New York (1998)CrossRefGoogle Scholar
  18. 18.
    Lounsbery, M., Derose, T., Warren, J.: Multiresolution analysis for surfaces of arbitrary topological type. ACM Transactions on Graphics 16, 34–73 (1997)CrossRefGoogle Scholar
  19. 19.
    Lee, A.W.F., Sweldens, W., Schroder, P., Cowsar, L., Dobkin, D.: Maps: Multiresolution adaptive parameterization of surfaces. In: SIGGRAPH 1998 Proceedings, pp. 95–104. ACM, New York (1998)CrossRefGoogle Scholar
  20. 20.
    Eck, M., DeRose, T., Duchamp, T.: Multiresolution analysis of arbitrary meshes. In: SIGGRAPH 1995 Proceedings, pp. 173–182. ACM, New York (1995)CrossRefGoogle Scholar
  21. 21.
    Khodakovsky, A., Schroder, P., Sweldens, W.: Progressive geometry compression. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 271–278. ACM, New York (2000)CrossRefGoogle Scholar
  22. 22.
    Guskov, I., Vidimce, K., Sweldens, W., Schroder, P.: Normal meshes. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 95–102. ACM, New York (1995)Google Scholar
  23. 23.
    Guskov, I., Khodakovsky, A., Schroder, P., Sweldens, W.: Hybrid meshes: multiresolution using regular and irregular refinement. In: Proceedings of the eighteenth annual symposium on Computational geometry, pp. 264–272. ACM Press, New York (2002)CrossRefGoogle Scholar
  24. 24.
    James, D.L., Pai, D.K.: Multiresolution green’s function methods for interactive simulation of large-scale elastostatic objects. ACM Transactions on Graphics 22, 47–82 (2003)CrossRefGoogle Scholar
  25. 25.
    Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. In: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 355–361. ACM, New York (2002)CrossRefGoogle Scholar
  26. 26.
    Loop, C.T.: Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah, Department of Mathematics (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hiroshi Kawaharada
    • 1
  • Kokichi Sugihara
    • 1
  1. 1.Department of Mathematical Informatics, Graduate School of Information Science and TechnologyUniversity of Tokyo 

Personalised recommendations