Advertisement

Optimising Triangulated Polyhedral Surfaces with Self–intersections

  • Lyuba Alboul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2768)

Abstract

We discuss an optimisation procedure for triangulated polyhedral surfaces (referred to as (2-3)D triangulations) which allows us to process self–intersecting surfaces. As an optimality criterion we use minimisation of total absolute extrinsic curvature (MTAEC) and as a local transformation – a diagonal flip, defined in a proper way for (2-3)D triangulations. This diagonal flip is a natural generalisation of the diagonal flip operation in 2D, known as Lawson’s procedure. The difference is that the diagonal flip operation in (2-3)D triangulations may produce self-intersections. We analyze the optimisation procedure for (2-3)D closed triangulations, taking into account possible self–intersections. This analysis provides a general insight on the structure of triangulations, allows to characterise the types of self–intersections, as well as the conditions for global convergence of the algorithm. It provides also a new view on the concept of optimisation on the whole and is useful in the analysis of global and local convergence for other optimisation algorithms. At the end we present an efficient implementation of the optimality procedure for (2-3)D triangulations of the data, situated in the convex position, and conjecture possible results of this procedure for non–convex data.

Keywords

Convex Cone Polyhedral Surface Pinch Point Adjacent Triangle Discrete Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichholzer, O., Hurtado, F., Alboul, L.: On flips in polyhedral surfaces. Int. J. of Found. of Comp. Sc. 13(2), 303–311 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alboul, L., van Damme, R.: Polyhedral metrics in surface reconstruction. In: Mullineux, G. (ed.) The Mathematics of Surfaces VI, pp. 171–200. Clarendon Press, Oxford (1996)Google Scholar
  3. 3.
    Alboul, L., van Damme, R.: Polyhedral metrics in surface reconstruction: Tight triangulations. In: Goodman, T. (ed.) The Mathematics of Surfaces VII, pp. 309–336. Clarendon Press, Oxford (1997)Google Scholar
  4. 4.
    Alboul, L., Kloosterman, G., Traas, C.R., van Damme, R.: Best datadependent triangulations. J. of Comp. and Applied Math. 119, 1–12 (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Alboul, L., van Damme, R.: On flips in polyhedral surfaces: a new development. In: Proc. of EWCG 2002, Warsaw, April 10-12, pp. 80–84 (2002)Google Scholar
  6. 6.
    Alliez, P., Meyer, M., Desbrun, M.: Interactive geometry remeshing. ACM Transactions on Graphics (TOG) 21(3), 347–354 (2002)CrossRefGoogle Scholar
  7. 7.
    Bischoff, S., Kobbelt, L.: Towards robust broadcasting of geometry data. To appear in Computers and Graphics (2001) Google Scholar
  8. 8.
    Brehm, U., Kühnel, W.: Smooth approximation of polyhedral surfaces with respect to curvature measures. In: Global differential geometry, pp. 64–68 (1979)Google Scholar
  9. 9.
    Choi, B.K., Shin, H.Y., Yoon, Y.I., Lee, J.W.: Triangulations of Scattered Data in 3D Space. Comp. Aided Design 20(5), 239–248 (1988)zbMATHCrossRefGoogle Scholar
  10. 10.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In: Proc. of the Int. Workshop on Visualization and Mathematics (VisMath 2002), Berlin, p. 27 (2002)Google Scholar
  11. 11.
    do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  12. 12.
    Dyn, N., Goren, I., Rippa, A.: Transforming Triangulations in Polygonal Domains. Computer Aided Geometric Design 10, 531–536 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dyn, N., Hormann, K., Kim, S.-J., Levin, D.: Optimising 3D triangulations using discrete curvature analysis. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods in CAGD, pp. 1–12. Vanderbilt University Press, Nashville (2001)Google Scholar
  14. 14.
    Falcidieno, B., Spagnuolo, M.: A new method for the characterization of topographic surfaces. Int. J. Geographical information systems 5(4), 397–412 (1991)CrossRefGoogle Scholar
  15. 15.
    Francis, G.K.: A Topological Picturebook. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  16. 16.
    Ignatiev, Y., Matveev, I., Mikushin, V.: Generating consistent triangulation for b-rep models with parametric face representation in 3D–Vision system. Grid Generation: Theory and Applications, RAS, 241–266 (2002), ISBN 5-201-09784-7, 3D–Vision system, industrial software Internet: http://www.ccas.ru/gridgen/ggta02/papers/Matveev.pdf
  17. 17.
    Kobbelt, L.: Fairing by finite difference methods. In: Daehlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 279–286. Vanderbilt University Press, Nashville (1998)Google Scholar
  18. 18.
    Krsek, P., Lucács, G., Martin, R.R.: Algorithms for computing curvatures from range data. In: Cripps, R. (ed.) The Mathematics of Surfaces VIII 1998, pp. 1–16 (1998)Google Scholar
  19. 19.
    Kühnel, W.: Tight Polyhedral Submanifolds and Tight Triangulations. Lecture Notes in Mathematics, vol. 1612. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  20. 20.
    Lawson, C.: Transforming triangulations. Discrete mathematics 3, 365–372 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ma, L., Wang, Q., Kai Yun, T.C.: Recursive Algorithms for 3D Triangulation Decomposition and 2D Parameterization. In: 5th International Conference on Computer Integrated Manufacturing (ICCIM), Singapore, March 28-30, p. 12 (2000) Google Scholar
  22. 22.
    Maltret, J.-L., Daniel, M.: Discrete curvatures and applications: a survey, http://creatis-www.insa-lyon.fr/~frog/curvature
  23. 23.
    Morris, D.D., Kanade, T.: Image-Consistent Surface Triangualtion. In: Proc. 19th Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 332–338. IEEE, Los Alamitos (2000)Google Scholar
  24. 24.
    Negami, S.: Diagonal flips of triangulations on surfaces. Yokohama Math. J. 47, 1–40 (1999)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Rocchini, C., Cignoni, P., Montani, C., Pingi, P., Scopigno, R.: A low cost 3D scanner based on structured light. In: EUROGRAPHICS 2001, vol. 20(3), pp. 298–307 (2001)Google Scholar
  26. 26.
    van Damme, R., Alboul, L.: Tight triangulations. In: Daehlen, M., et al. (eds.) Mathematical methods in CAGD III, pp. 517–526 (1995)Google Scholar
  27. 27.
    Wagner, K.: Bemekungen zum Vierfarbenproblem. J. der Deut. Math. 46(1), 26–32 (1936)Google Scholar
  28. 28.
    Weinert, K., Mehnen, J., Albersmann, F., Drerup, P.: New solutions for surface reconstruction from discrete point data by means of computational intelligence. In: Int’l seminar on intelligent computation in manufacturing engineering (ICME 1998), pp. 431–438 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Lyuba Alboul
    • 1
  1. 1.Sheffield Hallam UniversitySheffieldUK

Personalised recommendations