Application of PDE Methods to Visualization of Heart Data

  • Ognyan Kounchev
  • Michael J. Wilson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2768)


We apply new methods based on Partial Differential Equations techniques (polysplines) to the visualization of the heart surface.


Radial Basis Function Deformable Model Minimum Curvature Nonrigid Motion Heart Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amini, A., Duncan, J.: Pointwise tracking of Left-Ventricular Motion in 3D. In: Proc. IEEE Workshop on Visual Motion, Princeton, NJ, pp. 294–298 (1991)Google Scholar
  2. 2.
    Arts, T., Hunter, W.C., Douglas, A., Muijtjens, M.M., Reneman, R.S.: Description of the deformation of the left ventricle by a kinematic model. J. Biomechanics 25(10), 1119–1127 (1992)CrossRefGoogle Scholar
  3. 3.
    Ayache, N., Chapelle, D., Clément, F., Coudière, Y., Delingette, H., Désidéri, J.A., Sermesant, M., Sorine, M., Urquiza, J.M.: Towards model-based estimation of the cardiac electro-mechanical activity from ECG signals and ultrasound images. In: Katila, T., Magnin, I.E., Clarysse, P., Montagnat, J., Nenonen, J. (eds.) FIMH 2001. LNCS, vol. 2230, pp. 120–127. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Beyar, R., Sideman, S.: Effect of the twisting motion on the non-uniformities of transmural fiber mechanics and energy demands—A theoretical Study. IEEE Trans. Biomed. Eng. 32, 764–769 (1985)CrossRefGoogle Scholar
  5. 5.
    Bloor, M.I.G., Wilson, M.J.: The PDE method in geometric and functional design. In: Goodman, T., et al. (eds.) The mathematics of surfaces. VII. Proceedings of the 7th conference, Dundee, Great Britain, September 1996, pp. 281–307. Information Geometers, Limited, Winchester (1997)Google Scholar
  6. 6.
    Briggs, J.C.: Machine contouring using minimum curvature. Geophysics 39, 39–48 (1974)CrossRefGoogle Scholar
  7. 7.
    Cohen, L.D., Cohen, I.: A Finite Element Method Applied to New Active Contour Models and 3d Reconstruction from Cross-sections. In: Proc. 3rd Int. Conf. on Computer Vision, Osaka, Japan, pp. 587–591 (1990)Google Scholar
  8. 8.
    Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. R.A.I.R.O. Analyse numerique 10(12), 5–12 (1976)MathSciNetGoogle Scholar
  9. 9.
    Dyn, N.: Interpolation and approximation by radial and related functions. In: Chui, C.K., Schumaker, L.L., Ward, J.D. (eds.) Approximation Theory VI, pp. 211–234. Academic Press, New York (1989)Google Scholar
  10. 10.
    Farin, G.E.: Curves and Surfaces for Computer Aided Geometric Design: a Practical Guide, 4th edn. Academic Press, Boston (1997)zbMATHGoogle Scholar
  11. 11.
    Gonzalez-Casanova, P., Alvarez, R.: Splines in geophysics. Geophysics 50(12), 2831–2848 (1985)CrossRefGoogle Scholar
  12. 12.
    Haber, E., Metaxas, D.N., Axel, L.: MICCAI 1998. LNCS, vol. 1496, pp. 177–188. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Huang, W.C., Goldgof, D.: Adaptive-Size Meshes for Rigid and Nonrigid Shape Analysis and Synthesis. IEEE Transactions on Pattern Analysis 15, 611–616 (1993)CrossRefGoogle Scholar
  14. 14.
    Kim, W.Y., et al.: Left-ventricular blood-flow patterns in normal subjects. Journal of the American College of Cardiology 26(1), 224–237 (1995)CrossRefGoogle Scholar
  15. 15.
    Kim, H.C., Min, B.G., Lee, M.M., Seo, J.D., Lee, Y.W., Han, M.C.: Estimation of local cardiac wall deformation and regional stress from biplane coronary cineangiograms. IEEE Trans. Biomed. Eng. 32, 503–511 (1985)CrossRefGoogle Scholar
  16. 16.
    Kounchev, O.: Multivariate Polysplines. Applications to Numerical and Wavelet Analysis. Academic Press, San Diego (2001)zbMATHGoogle Scholar
  17. 17.
    McInerney, T., Terzopoulos, D.: A Finite Element Model for 3D Shape Reconstruction and Nonrigid Motion Tracking. In: Proc. 4th Internation Conference on Computer Vision, Berlin, Germany, pp. 518–523 (1993)Google Scholar
  18. 18.
    McInerney, T., Terzopoulos, D.: A Dynamic Finite-Element Surface Model for segmentation and tracking in Multi-dimensional Medical Images with application to Cardiac 4D Image-Analysis. Computerized Medical Imaging and Graphics 19, 69–83 (1995)CrossRefGoogle Scholar
  19. 19.
    Meinguet, J.: Multivariate interpolation at arbitrary points made simple. Z. Angew. Math. Phys. 30, 292–304 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Park, J., Metaxas, D., Young, A.A., Axel, L.: Deformable models with parameter functions for cardiac motion analysis from tagged MRI data. IEEE Trans. Medical Imaging 15, 278–289 (1996)CrossRefGoogle Scholar
  21. 21.
    Park, J., Metaxas, D., Young, A.A., Axel, L.: Deformable Models with Parameter Functions for Cardiac Motion Analysis from Tagged MRI Data. IEEE Transactions on Medical Imaging 15(3) (1996)Google Scholar
  22. 22.
    Pedley, T.J.: The Fluid Dynamics of Large Blood Vessels. Cambridge University Press, Cambridge (1980)Google Scholar
  23. 23.
    Pentland, A., Horowitz, B., Sclaroff, S.: Recovery of Nonrigid Motion and Structure from Contour. In: Proc. IEEE Workshop on Visual Motion, Princeton, NJ, pp. 288–293 (1991)Google Scholar
  24. 24.
    Peskin, C.S., McQueen, D.M.: Cardiac Fluid Dynamics. Critical Reviews in Biomedical Engineering 20(5-6), 451 et seq. (1992)Google Scholar
  25. 25.
    Powell, M.J.D.: The theory of radial basis function approximation in 1990. In: Advances in numerical analysis. In: Proc. 4th Summer Sch., Wavelets, subdivision algorithms, and radial basis functions, Lancaster/UK, vol. 2, pp. 105–210 (1992) Google Scholar
  26. 26.
    Roma, A.M., Peskin, C.S., Berger, M.J.: An Adaptive Version of the Immersed Boundary Method. Journal of Computational Physics 147(2), 509–534 (1999)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Saghri, J., Freeman, J.: Analysis of the Precision of Generalized Chain Codes for the Representation of Planar Curves. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-3, 533–539 (1981)CrossRefGoogle Scholar
  28. 28.
    Schoephoerster, R.T., Silva, C.L., Ray, G.: Evaluation of Left-Ventricular Function based on Simulated Systolic Flow Dynamics Computed from Regional Wall-Motion. Journal of Biomechanics 27(2), 125–136 (1994)CrossRefGoogle Scholar
  29. 29.
    Sermesant, M., Coudière, Y., Delingette, H., Ayache, N., Sainte-Marie, J., Chapelle, D., Clément, F., Sorine, M.: Progress Towards Model-Based Estimation of the Cardiac Electromechanical Activity from ECG Signals and 4D Images. In: Thiriet, M. (ed.) Modelling and Simulation for Computer-aided Medicine and Surgery (MS4CMS 2002). ESAIM: PROC, European Series in Applied and Industrial Mathematics, vol. 12, pp. 153–162 (2002)Google Scholar
  30. 30.
    Sermesant, M., Coudière, Y., Delingette, H., Ayache, N.: Progress towards an Electro-Mechanical Model of the Heart for Cardiac Image Analysis. In: IEEE International Symposium on Biomedical Imaging (ISBI 2002), pp. 10–14 (2002)Google Scholar
  31. 31.
    Sermesant, M., Forest, C., Pennec, X., Delingette, H., Ayache, N.: Biomechanical Model Construction from Different Modalities: Application to Cardiac Images. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 714–721. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  32. 32.
    Sermesant, M., Coudière, Y., Delingette, H., Ayache, N., Désidéri, J.A.: An electro-mechanical model of the heart for cardiac image analysis. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, p. 224. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. 33.
    Smith, J.J., Kampine, J.P.: Circulatory Physiology: the essentials, 3rd edn. Williams and Wilkins, Baltimore (1990)Google Scholar
  34. 34.
    Smith, M.H.F., Wessel, P.: Gridding with continuous curvature splines in tension. Geophysics 55(3), 293–305 (1990)CrossRefGoogle Scholar
  35. 35.
    SURFER – Golden Software, Golden, Colorado, Release of 1997Google Scholar
  36. 36.
    Taylor, D.E.M., Wade, J.D.: The pattern of flow around the atrioventricular valves during diastolic ventricular filling. Journal of Physiology 207, 71–72 (1970)Google Scholar
  37. 37.
    Taylor, T.W., Yamaguchi, T.: Flow Patterns in 3-dimensional Left-ventricular Systolic and Diastolic flows determined from Computational Fluid-Dynamics. Biorheology 32(1), 61–71 (1995)Google Scholar
  38. 38.
    Vierendeels, J.A., Riemslagh, K., Dick, E., Verdonck, P.R.: Computer Simulation of Intraventricular Flow and Pressure Gradients During Diastole. Journal of Biomechanical Engineering-Transactions of the ASME 122(6), 667–674 (2001)CrossRefGoogle Scholar
  39. 39.
    Yoganathan, A.P., Lemmon, J.D., Kim, Y.H., Walker, P.G., Levine, R.A., Vesier, C.C.: A Computational Study of a Thin-Walled 3-Dimensional Left Ventricle during Early Systole. Journal of Biomechanical Engineering-Transactions of the ASME 116(3), 307–314 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ognyan Kounchev
    • 1
  • Michael J. Wilson
    • 2
  1. 1.Institue of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.School of MathematicsUniversity of LeedsLeedsUK

Personalised recommendations