Modified Affine Arithmetic Is More Accurate than Centered Interval Arithmetic or Affine Arithmetic

  • Huahao Shou
  • Hongwei Lin
  • Ralph Martin
  • Guojin Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2768)


In this paper we give mathematical proofs of two new results relevant to evaluating algebraic functions over a box-shaped region: (i) using interval arithmetic in centered form is always more accurate than standard affine arithmetic, and (ii) modified affine arithmetic is always more accurate than interval arithmetic in centered form. Test results show that modified affine arithmetic is not only more accurate but also much faster than standard affine arithmetic. We thus suggest that modified affine arithmetic is the method of choice for evaluating algebraic functions, such as implicit surfaces, over a box.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bowyer, A., Martin, R., Shou, H., Voiculescu, I.: Affine intervals in a CSG geometric modeller. In: Winkler, J., Niranjan, M. (eds.) Uncertainty in Geometric Computations, pp. 1–14. Kluwer Academic Publisher, Dordrecht (2002)Google Scholar
  2. 2.
    Bühler, K.: Linear interval estimations for parametric objects theory and application. Computer Graphics Forum 20(3), 522–531 (2001)CrossRefGoogle Scholar
  3. 3.
    Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. Anais do VII SIBGRAPI, 9–18 (1993), Available at
  4. 4.
    De Cusatis Jr., A., De Figueiredo, L.H., Gattass, M.: Interval Methods for Ray Casting Implicit Surfaces with Affine Arithmetic. In: XII Brazilian Symposium on Computer Graphics and Image Processing, pp. 65–71 (1999)Google Scholar
  5. 5.
    De Figueiredo, L.H.: Surface intersection using affine arithmetic. In: Proceedings of Graphics Interface, pp. 168–175 (1996)Google Scholar
  6. 6.
    De Figueiredo, L.H., Stolfi, J.: Adaptive enumeration of implicit surfaces with affine arithmetic. Computer Graphics Forum 15(5), 287–296 (1996)Google Scholar
  7. 7.
    Heidrich, W., Seidel, H.P.: Ray tracing procedural displacement shaders. In: Proceedings of Graphics Interface, pp. 8–16 (1998)Google Scholar
  8. 8.
    Heidrich, W., Slusallek, P., Seidel, H.P.: Sampling of procedural shaders using affine arithmetic. ACM Trans. on Graphics 17(3), 158–176 (1998)CrossRefGoogle Scholar
  9. 9.
    Martin, R., Shou, H., Voiculescu, I., Bowyer, A., Wang, G.: Comparison of interval methods for plotting algebraic curves. Computer Aided Geometric Design 19(7), 553–587 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. Ellis Horwood (1984)Google Scholar
  11. 11.
    Shou, H., Martin, R., Voiculescu, I., Bowyer, A., Wang, G.: Affine arithmetic in matrix form for polynomial evaluation and algebraic curve drawing. Progress in Natural Science 12(1), 77–80 (2002)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Huahao Shou
    • 1
    • 2
  • Hongwei Lin
    • 1
  • Ralph Martin
    • 3
  • Guojin Wang
    • 1
  1. 1.State Key Laboratory of CAD & CGZhejiang UniversityHangzhouChina
  2. 2.Department of Applied MathematicsZhejiang University of TechnologyHangzhouChina
  3. 3.Department of Computer ScienceCardiff UniversityCardiffUK

Personalised recommendations