Advertisement

Efficient One-Sided Linearization of Spline Geometry

  • Jörg Peters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2768)

Abstract

This paper surveys a new, computationally efficient technique for linearizing curved spline geometry, bounding such geometry from one side and constructing curved spline geometry that stays to one side of a barrier or inside a given channel. Combined with a narrow error bound, these reapproximations tightly couple linear and nonlinear representations and allow them to be substituted when reasoning about the other. For example, a subdividable linear efficient variety enclosure (sleve, pronounced like Steve) of a composite spline surface is a pair of matched triangulations that sandwich a surface and may be used for interference checks. The average of the sleve components, the mid-structure, is a good max-norm linearization and, similar to a control polytope, has a well-defined, associated curved geometry representation. Finally, the ability to fit paths through given channels or keep surfaces near but outside forbidden regions, allows extending many techniques of linear computational geometry to the curved, nonlinear realm.

Keywords

Spline Space Subdivision Surface Control Polygon Binary Space Partition Channel Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Suri, S.: Agarwal and Subhash Suri. Surface approximation and geometric partitions. SIAM Journal on Computing 27(4), 1016–1035 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Basch, J.: Kinetic Data Structures. PhD thesis, Stanford University (1999) Google Scholar
  3. 3.
    Buck, R.C.: Applications of duality in approximation theory. In: Approximation of Functions Proc. Sympos. General Motors Res. Lab., pp. 27–42. Elsevier Publ. Co., Amsterdam (1965)Google Scholar
  4. 4.
    Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P., Brooks Jr., F.P., Wright, W.: Simplification envelopes. In: Rushmeier, H. (ed.) SIGGRAPH 1996 Conference Proceedings. Annual Conference Series, New Orleans, Louisiana. ACM SIGGRAPH, August 04-09, pp. 119–128. Addison Wesley, Reading (1996)Google Scholar
  5. 5.
    Crosnier, A., Rossignac, J.R.: Technical section — tribox bounds for three dimensional objects. Computers and Graphics 23(3), 429–437 (1999)CrossRefGoogle Scholar
  6. 6.
    Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S.: http://www-fp.mcs.anl.gov/otc/Tools/PCx
  7. 7.
    Dobkin, D., Gansner, E.R., Koutsofios, E., North, S.C.: A path router for graph drawing. In: Proceedings of the 14th annual symposium on Computational Geometry, Minneapolis, MN, June 1-10, pp. 415–416. ACM Press, New York (1998)Google Scholar
  8. 8.
    Farin, G.: Tighter convex hulls for rational Bézier curves. Comput. Aided Geom. Design 10, 123–125 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Filip, D., Magedson, R., Markot, R.: Surface algorithms using bounds on derivatives. CAGD 3(4), 295–311 (1986)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for rapid interference detection. Computer Graphics. Annual Conference Series, vol. 30, pp. 171–180 (1996)Google Scholar
  11. 11.
    Kay, T.L., Kajiya, J.T.: Ray tracing complex scenes. In: Evans, D.C., Athay, R.J. (eds.) Computer Graphics (SIGGRAPH 1986 Proceedings), vol. 20, pp. 269–278 (August 1986)Google Scholar
  12. 12.
    Klosowski, J.T., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics 4(1), 21–36 (1998)CrossRefGoogle Scholar
  13. 13.
    Klosowski, J.T.: Efficient collision detection for interactive 3d graphics and virtual environments. PhD thesis, State Univ. of New York at Stony Brook (May 1998) Google Scholar
  14. 14.
    Kobbelt, L.P., Daubert, K., Seidel, H.-P.: Ray tracing of subdivision surfaces. In: Rendering Techniques 1998 (Proceedings of the Eurographics Workshop), pp. 69–80. Springer, New York (1998)Google Scholar
  15. 15.
    Lutterkort, D., Peters, J.: Smooth paths in a polygonal channel. In: Proceedings of the 15th annual symposium on Computational Geometry, pp. 316–321 (1999)Google Scholar
  16. 16.
    Lutterkort, D., Peters, J.: Optimized refinable enclosures of multivariate polynomial pieces. Comput. Aided Geom. Design 18(9), 851–863 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lutterkort, D.: Envelopes for Nonlinear Geometry. PhD thesis, Purdue University (May 2000) Google Scholar
  18. 18.
    Nairn, D., Peters, J., Lutterkort, D.: Sharp, quantitative bounds on the distance between a polynomial piece and its Bézier control polygon. Computer Aided Geometric Design 16(7), 613–633 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Berlin (2002)zbMATHGoogle Scholar
  20. 20.
    Patrikalakis, N.M., Maekawa, T.: Intersection problems. Handbook of Computer Aided Geometric Design. Springer, Heidelberg (2001)Google Scholar
  21. 21.
    Peters, J., Wu, X.: On the optimality of piecewise linear max-norm enclosures based on slefes. In: Proceedings of the 2002 St Malo conference on Curves and Surfaces (2003)Google Scholar
  22. 22.
    Peters, J., Wu, X.: Optimized refinable surface enclosures. Technical report, University of Florida (2000) Google Scholar
  23. 23.
    Peters, J., Wu, X.: Sanwiching spline surfaces. Computer-Aided Geometric Design (200x) Google Scholar
  24. 24.
    Pinkus, A.M.: On L 1-approximation. Cambridge University Press, Cambridge (1989)Google Scholar
  25. 25.
    Reif, U.: Best bounds on the approximation of polynomials and splines by their control structure. Comput. Aided Geom. Design 17(6), 579–589 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sander, P.V., Gu, X., Gortler, S.J., Hoppe, H., Snyder, J.: Silhouette clipping. Computer Graphics. Annual Conference Series, vol. 34, pp. 327–334 (2000)Google Scholar
  27. 27.
    Sederberg, T.W., Farouki, R.T.: Approximation by interval bezier curves. IEEE Computer Graphics and Applications 12(5), 87–95 (1992)CrossRefGoogle Scholar
  28. 28.
    Sederberg, T.W., White, S.C., Zundel, A.K.: Fat arcs: A bounding region with cubic convergence. Comput. Aided Geom. Design 6, 205–218 (1989)zbMATHCrossRefGoogle Scholar
  29. 29.
    Shen, G., Patrikalakis, N.M.: Numerical and geometric properties of interval B-splines. International Journal of Shape Modeling 4(1,2), 35–62 (1998)zbMATHCrossRefGoogle Scholar
  30. 30.
    Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jörg Peters
    • 1
  1. 1.Computer and Information Science and EngineeringUniversity of FloridaGainsvilleUSA

Personalised recommendations