Advertisement

Parameterizing N-Holed Tori

  • Cindy Grimm
  • John Hughes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2768)

Abstract

We define a parameterization for an n-holed tori based on the hyperbolic polygon. We model the domain using a manifold with 2n+2 charts, and linear fractional transformations for transition functions. We embed the manifold using standard spline techniques to produce a surface.

CR Categories: I.3.5 [Computer Graphics]

Computational Geometry and Object Modeling Curve Surface Solid and Object Representations Splines n-holed tori hyperbolic octagon linear fractional transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BBB87.
    Bartels, R., Beatty, J., Barsky, B.: An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco (1987)zbMATHGoogle Scholar
  2. Blo97.
    Bloomenthal, J. (ed.): Introduction to Implicit Surfaces. Morgan Kaufmann, San Francisco (1997)zbMATHGoogle Scholar
  3. CBC+01.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Richard Fright, W., McCallum, B.C., Evans, T.R.: Reconstruction and Representation of 3D Objects With Radial Basis Functions. In: Proceedings of ACM SIGGRAPH 2001, pp. 67–76 (2001)Google Scholar
  4. CC78.
    Catmull, E., Clark, J.: Reursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design 10, 350–355 (1978)CrossRefGoogle Scholar
  5. CDGM00.
    Charette, V., Drumm, T., Goldman, W., Morrill, M.: Complete Flat Affine and Lorentzian Manifolds. In: Proceedings of the Workshop Crystallographic Groups and their Generalizations II. Contemporary Mathematics, vol. 262, pp. 135–146. American Mathematical Society, Providence (2000)Google Scholar
  6. DKT98.
    DeRose, T.D., Kass, M., Truong, T.: Subdivision Surfaces in Character Animation. In: SIGGRAPH 1998, pp. 85–94 (1998)Google Scholar
  7. FB91.
    Fowler, B., Bartels, R.H.: Constraint based curve manipulation. Siggraph course notes 25 (July 1991) Google Scholar
  8. Flo97.
    Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric Design 14(3), 231–250 (1997) ISSN 0167-8396zbMATHCrossRefMathSciNetGoogle Scholar
  9. FPRJ00.
    Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.: Adaptively Sampled Distance Fields: A General Representation of Shape for Computer Graphics. In: Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings. Annual Conference Series, pp. 249–254. ACM Press / ACM SIGGRAPH / Addison Wesley Longman (July 2000) ISBN 1-58113-208-5Google Scholar
  10. FR93.
    Ferguson, H., Rockwood, A.: Multiperiodic functions for surface design. Computer Aided Geometric Design 10(3), 315–328 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. GH95.
    Grimm, C., Hughes, J.: Modeling Surfaces of Arbitrary Topology using Manifolds. Computer Graphics 29(2) (July 1995); Proceedings of SIGGRAPH 1995Google Scholar
  12. Gri96.
    Grimm, C.: Surfaces of Arbitrary Topology using Manifolds. PhD thesis, Brown University (in progress) (1996) Google Scholar
  13. Gri02.
    Grimm, C.: Simple Manifolds for Surface Modeling and Parameterization. Shape Modelling International (May 2002) Google Scholar
  14. Ld89.
    Loop, C., deRose, T.: A multisided generalization of bezier surfaces. ACM Transactions on Graphics 8(3), 204–234 (1989)zbMATHCrossRefGoogle Scholar
  15. Lef49.
    Lefschetz, S.: Introduction to Topology. Princeton University Press, Princeton (1949)zbMATHGoogle Scholar
  16. Mas77.
    Massey, W.S.: Algebraic Topology: An Introduction. Springer, New York (1977)Google Scholar
  17. NG00.
    Cotrina Navau, J., Pla Garcia, N.: Modeling surfaces from meshes of arbitrary topology. Computer Aided Geometric Design 17(7), 643–671 (2000) ISSN 0167-8396zbMATHCrossRefMathSciNetGoogle Scholar
  18. Pet96.
    Peters, J.: Curvature continuous spline surfaces over irregular meshes. Computer-Aided Geometric Design 13(2), 101–131 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  19. RP99.
    Rockwood, A., Park, H.: Interactive design of smooth genus N objects using multiperiodic functions and applications. International Journal of Shape Modeling 5, 135–157 (1999)CrossRefGoogle Scholar
  20. Ser90.
    Serre, J.P.: A Course in Arithmetic. Springer, New York (1990)Google Scholar
  21. WP97.
    Wallner, J., Pottmann, H.: Spline orbifolds. Curves and Surfaces with Applications in CAGD, 445–464 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Cindy Grimm
    • 1
  • John Hughes
    • 2
  1. 1.Washington University in St. LouisSt. Louis
  2. 2.Brown UniversityProvidence

Personalised recommendations