Parameterizing N-Holed Tori

  • Cindy Grimm
  • John Hughes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2768)


We define a parameterization for an n-holed tori based on the hyperbolic polygon. We model the domain using a manifold with 2n+2 charts, and linear fractional transformations for transition functions. We embed the manifold using standard spline techniques to produce a surface.

CR Categories: I.3.5 [Computer Graphics]

Computational Geometry and Object Modeling Curve Surface Solid and Object Representations Splines n-holed tori hyperbolic octagon linear fractional transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BBB87.
    Bartels, R., Beatty, J., Barsky, B.: An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco (1987)zbMATHGoogle Scholar
  2. Blo97.
    Bloomenthal, J. (ed.): Introduction to Implicit Surfaces. Morgan Kaufmann, San Francisco (1997)zbMATHGoogle Scholar
  3. CBC+01.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Richard Fright, W., McCallum, B.C., Evans, T.R.: Reconstruction and Representation of 3D Objects With Radial Basis Functions. In: Proceedings of ACM SIGGRAPH 2001, pp. 67–76 (2001)Google Scholar
  4. CC78.
    Catmull, E., Clark, J.: Reursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design 10, 350–355 (1978)CrossRefGoogle Scholar
  5. CDGM00.
    Charette, V., Drumm, T., Goldman, W., Morrill, M.: Complete Flat Affine and Lorentzian Manifolds. In: Proceedings of the Workshop Crystallographic Groups and their Generalizations II. Contemporary Mathematics, vol. 262, pp. 135–146. American Mathematical Society, Providence (2000)Google Scholar
  6. DKT98.
    DeRose, T.D., Kass, M., Truong, T.: Subdivision Surfaces in Character Animation. In: SIGGRAPH 1998, pp. 85–94 (1998)Google Scholar
  7. FB91.
    Fowler, B., Bartels, R.H.: Constraint based curve manipulation. Siggraph course notes 25 (July 1991) Google Scholar
  8. Flo97.
    Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric Design 14(3), 231–250 (1997) ISSN 0167-8396zbMATHCrossRefMathSciNetGoogle Scholar
  9. FPRJ00.
    Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.: Adaptively Sampled Distance Fields: A General Representation of Shape for Computer Graphics. In: Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings. Annual Conference Series, pp. 249–254. ACM Press / ACM SIGGRAPH / Addison Wesley Longman (July 2000) ISBN 1-58113-208-5Google Scholar
  10. FR93.
    Ferguson, H., Rockwood, A.: Multiperiodic functions for surface design. Computer Aided Geometric Design 10(3), 315–328 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. GH95.
    Grimm, C., Hughes, J.: Modeling Surfaces of Arbitrary Topology using Manifolds. Computer Graphics 29(2) (July 1995); Proceedings of SIGGRAPH 1995Google Scholar
  12. Gri96.
    Grimm, C.: Surfaces of Arbitrary Topology using Manifolds. PhD thesis, Brown University (in progress) (1996) Google Scholar
  13. Gri02.
    Grimm, C.: Simple Manifolds for Surface Modeling and Parameterization. Shape Modelling International (May 2002) Google Scholar
  14. Ld89.
    Loop, C., deRose, T.: A multisided generalization of bezier surfaces. ACM Transactions on Graphics 8(3), 204–234 (1989)zbMATHCrossRefGoogle Scholar
  15. Lef49.
    Lefschetz, S.: Introduction to Topology. Princeton University Press, Princeton (1949)zbMATHGoogle Scholar
  16. Mas77.
    Massey, W.S.: Algebraic Topology: An Introduction. Springer, New York (1977)Google Scholar
  17. NG00.
    Cotrina Navau, J., Pla Garcia, N.: Modeling surfaces from meshes of arbitrary topology. Computer Aided Geometric Design 17(7), 643–671 (2000) ISSN 0167-8396zbMATHCrossRefMathSciNetGoogle Scholar
  18. Pet96.
    Peters, J.: Curvature continuous spline surfaces over irregular meshes. Computer-Aided Geometric Design 13(2), 101–131 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  19. RP99.
    Rockwood, A., Park, H.: Interactive design of smooth genus N objects using multiperiodic functions and applications. International Journal of Shape Modeling 5, 135–157 (1999)CrossRefGoogle Scholar
  20. Ser90.
    Serre, J.P.: A Course in Arithmetic. Springer, New York (1990)Google Scholar
  21. WP97.
    Wallner, J., Pottmann, H.: Spline orbifolds. Curves and Surfaces with Applications in CAGD, 445–464 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Cindy Grimm
    • 1
  • John Hughes
    • 2
  1. 1.Washington University in St. LouisSt. Louis
  2. 2.Brown UniversityProvidence

Personalised recommendations