Advertisement

The Plateau-Bézier Problem

  • Juan Monterde
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2768)

Abstract

We study the Plateau problem restricted to polynomial surfaces using techniques coming from the theory of Computer Aided Geometric Design. The results can be used to obtain polynomial approximations to minimal surfaces. The relationship between harmonic Bézier surfaces and minimal surfaces with free boundaries is shown.

Keywords

Control Point Free Boundary Minimal Surface Minimal Area Bernstein Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cosín, C., Monterde, J.: Bézier surfaces of minimal area. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2330, pp. 72–81. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    do Carmo, M.P.: Differential Geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs (1976)zbMATHGoogle Scholar
  3. 3.
    Farin, G.: Curves and surfaces for computer aided geometric design, 5th edn. A practical guide. Morgan Kaufmann, San Francisco (2001)Google Scholar
  4. 4.
    Gallier, J.: Curves and surfaces in geometric modeling. Theory and algorithms. Morgan Kaufmann Publ., San Francisco (2000)Google Scholar
  5. 5.
    Hildebrandt, S.: Some results on minimal surfaces with free boundaries. In: Dold, A., Eckmann, B. (eds.) Nonlinear Analysis and Optimization. LNM, vol. 1007, pp. 115–134 (1983)Google Scholar
  6. 6.
    Lorentz, G.G.: Bernstein polynomials, 2nd edn. Chelsea Publishing Co., New York (1986)zbMATHGoogle Scholar
  7. 7.
    Mars, D.: Applied Geometry for computer graphics and CAD. Springer, London (1999)Google Scholar
  8. 8.
    Nitsche, J.C.C.: Lectures on minimal surfaces, vol. 1. Cambridge Univ. Press, Cambridge (1989)zbMATHGoogle Scholar
  9. 9.
    Osserman, R.: A survey of minimal surfaces. Dover Publ., New York (1986)Google Scholar
  10. 10.
    Polthier, K., Rossman, W.: Discrete constant mean curvature surfaces and their index. J. Reine Angew. Math. 549, 47–77 (2002)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Juan Monterde
    • 1
  1. 1.Dpt. de Geometria i TopologiaUniversitat de ValènciaBurjassot (València)Spain

Personalised recommendations