Advertisement

Filling Holes in Point Clouds

  • Pavel Chalmovianský
  • Bert Jüttler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2768)

Abstract

Laser scans of real objects produce data sets (point clouds) which may have holes, due to problems with visibility or with the optical properties of the surface. We describe a method for detecting and filling these holes. After detecting the boundary of the hole, we fit an algebraic surface patch to the neighbourhood and sample auxiliary points. The method is able to reproduce technically important surfaces, such as planes, cylinders, and spheres. Moreover, since it avoids the parameterization problem for scattered data fitting by parametric surfaces, it can be applied to holes with complicated topology.

Keywords

Reverse engineering scattered data algebraic surface fitting meshless methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akkouche, S., Galin, E.: Adaptive implicit surface polygonization using marching triangles. Computer Graphics Forum 20(2), 67–80 (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bajaj, C.L.: Implicit surface patches. In: Bloomenthal, J. (ed.) Introduction to implicit surfaces. Morgan Kaufmann, San Francisco (1997)Google Scholar
  3. 3.
    Clarenz, U., Rumpf, M., Telea, A.: Robust feature detection and local classification for surfaces based on moment analysis. IEEE Transactions on Visualization and Computer Graphics (2003) (submitted), available online at http://numerik.math.uni-duisburg.de/research/publications.htm
  4. 4.
    DeRose, T., Goldman, R.N., Hagen, H., Mann, S.: Functional composition algorithms via blossoming. ACM Trans. Graph. 12(2), 113–135 (1993)zbMATHCrossRefGoogle Scholar
  5. 5.
    Curless, B., et al.: The Digital Michelangelo Project (2000), http://graphics.stanford.edu/projects/mich/
  6. 6.
    Farin, G., Hoschek, J., Kim, M.-S. (eds.): Handbook of computer aided geometric design. North-Holland, Amsterdam (2002)zbMATHGoogle Scholar
  7. 7.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. Computer Graphics 26(2), 71–78 (1992)CrossRefGoogle Scholar
  8. 8.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. AK Peters, Wellesley (1993)zbMATHGoogle Scholar
  9. 9.
    Jüttler, B., Felis, A.: Least-squares fitting of algebraic spline surfaces. Adv. Comput. Math. 17(1-2), 135–152 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1987)CrossRefGoogle Scholar
  11. 11.
    Ramshaw, L.: Blossoms are polar forms. Comput. Aided Geom. Des. 6(4), 323–358 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ramshaw, L.: On multiplying points: The paired algebras of forms and sites. SRC Research Report #169, COMPAQ Corp. (2001) Google Scholar
  13. 13.
    Rausch, T., Wolter, F.-E., Sniehotta, O.: Computation of medial curves on surfaces. In: Goodman, T., Martin, R. (eds.) The mathematics of surfaces VII, pp. 43–68. Information Geometers, Ltd. (1997)Google Scholar
  14. 14.
    Sack, J.-R., Urrutia, J. (eds.): Handbook of computational geometry. North-Holland, Amsterdam (2000)zbMATHGoogle Scholar
  15. 15.
    Schaback, R.: Remarks on meshless local construction of surfaces. In: Cipolla, R., Martin, R. (eds.) The mathematics of surfaces IX. Proceedings of the 9th IMA conference Cambridge, pp. 34–58. Springer, London (2000)Google Scholar
  16. 16.
    Taubin, R.: Estimation of planar curves, surfaces, and non-planar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intelligence 13, 1115–1139 (1991)CrossRefGoogle Scholar
  17. 17.
    Tucholsky, K.: Zur soziologischen Psychologie der Löcher. In: Zwischen Gestern und Morgen. Rohwolt, Hamburg (1952)Google Scholar
  18. 18.
    Varady, T., Martin, R.R., Cox, J.: Reverse engineering of geometric models - an introduction. Comput.–Aided Des. 29(4), 255–268 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Pavel Chalmovianský
    • 1
  • Bert Jüttler
    • 2
  1. 1.Spezialforschungsbereich SFB 013Johannes Kepler UniversityLinz
  2. 2.Dept. of Applied GeometryJohannes Kepler UniversityLinz

Personalised recommendations