Skip to main content

A Graph-Spectral Method for Surface Height Recovery

  • Conference paper
Mathematics of Surfaces

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2768))

  • 780 Accesses

Abstract

This paper describes a graph-spectral method for 3D surface integration. The algorithm takes as its input a 2D field of surface normal estimates, delivered, for instance, by a shape-from-shading or shape-from-texture procedure. We commence by using the Mumford-Shah energy function to obtain transition weights for pairs of sites in the field of surface normals. The weights depend on the sectional curvature between locations in the field of surface normals. This curvature may be estimated using the change in surface normal direction between locations. We pose the recovery of the integration path as that of finding a path that maximises the total transition weight. To do this we use a graph-spectral seriation technique. By threading the surface normals together along the seriation path, we perform surface integration. The height increments along the path are simply related to the traversed path length and the slope of the local tangent plane. The method is evaluated on needle-maps delivered by a shape-from-shading algorithm applied to real world data and also on synthetic data. The method is compared with the height reconstruction method of Bichsel and Pentland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rockwood, A.P., Winget, J.: Three-dimensional object reconstruction from two dimensional images. Computer-Aided Design 29(4), 279–285 (1997)

    Article  Google Scholar 

  2. Horn, B.K.P., Brooks, M.J.: The variational approach to shape from shading. CVGIP 33(2), 174–208 (1986)

    Google Scholar 

  3. Horn, B.K.P., Brooks, M.J.: Height and gradient from shading. International Journal of Computer Vision 5(1), 37–75 (1986)

    Article  Google Scholar 

  4. Wu, Z., Li, L.: A line-integration based method for depth recovery from surface normals. CVGIP 43(1), 53–66 (1988)

    Google Scholar 

  5. Frankot, R.T., Chellappa, R.: A method of enforcing integrability in shape from shading algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 4(10), 439–451 (1988)

    Article  Google Scholar 

  6. Kimmel, R., Siddiqqi, K., Kimia, B.B., Bruckstein, A.M.: Shape from shading: Level set propagation and viscosity solutions. International Journal of Computer Vision (16), 107–133 (1995)

    Google Scholar 

  7. Kimmel, R., Bruckstein, A.M.: Tracking level sets by level sets: a method for solving the shape from shading problem. Computer vision and Image Understanding 62(2), 47–48 (1995)

    Article  Google Scholar 

  8. Leclecrc, Y.G., Bobick, A.F.: The direct computation of height from shading. Proceedings of Computer Vision and Pattern Recognition, 552–558 (1991)

    Google Scholar 

  9. Tsai, P.S., Shah, M.: Shape from shading using linear approximation. Image and Vision Computing 12(8), 487–498 (1994)

    Article  Google Scholar 

  10. Dupuis, P., Oliensis, J.: Direct method for reconstructing shape from shading. In: CVPR 1992, pp. 453–458 (1992)

    Google Scholar 

  11. Bichsel, M., Pentland, A.P.: A simple algorithm for shape from shading. In: CVPR 1992, pp. 459–465 (1992)

    Google Scholar 

  12. Jones, A.G., Taylor, C.J.: Robust shape from shading. Image and Vision Computing 12(7), 411–421 (1994)

    Article  Google Scholar 

  13. Zhang, R., Tsai, P.-S., Cryer, J.E., Shah, M.: Shape from shading: A survery. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(8), 690–706 (1999)

    Article  Google Scholar 

  14. Neuenschwander, W., Fua, P., Szekely, G., Kubler, O.: Deformable velcro surfaces. In: Proc. of the IEEE Int. Conf. on Comp. Vision, pp. 828–833 (1995)

    Google Scholar 

  15. Varga, R.S.: Matrix Iterative Analysis, 2nd edn. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  16. Lovász, L.: Random walks on graphs: a survey. Bolyai Society Mathematical Studies 2(2), 1–46 (1993)

    Google Scholar 

  17. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. in Pure and Appl. Math. 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Atkins, J.E., Roman, E.G., Hendrickson, B.: A spectral algorithm for seriation and the consecutive ones problem. SIAM Journal on Computing 28(1), 297–310 (1998)

    Article  MATH  Google Scholar 

  19. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  20. Leite, J.A.F., Hancock, E.R.: Iterative curve organisation with the em algorithm. Pattern Recognition Letters 18, 143–155 (1997)

    Article  Google Scholar 

  21. Zucker, S.W., David, C., Dobbins, A., Iverson, L.: The organization of curve detection: Coarse tangent fields and fine spline coverings. In: Proc. of the IEEE Int. Conf. on Comp. Vision, pp. 568–577 (1988)

    Google Scholar 

  22. Williams, L.R., Jacobs, D.W.: Stochastic completion fields: A neural model of illusory contour shape and salience. Neural Computation 9(4), 837–858 (1997)

    Article  Google Scholar 

  23. Bremaud, P.: Markov Chains, Gibbs Fields, Monte Carlo Simulation and Queues. Springer, Heidelberg (2001)

    Google Scholar 

  24. Worthington, P.L., Hancock, E.R.: New constraints on data-closeness and needle map consistency for shape-from-shading. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12), 1250–1267 (1999)

    Article  Google Scholar 

  25. Bors, A., Wilson, R.C., Hancock, E.R.: Terrain analysis using radar imagery. To appear in the IEEE Trans. on Pattern Analysis and Machine Intelligence (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robles-Kelly, A., Hancock, E.R. (2003). A Graph-Spectral Method for Surface Height Recovery. In: Wilson, M.J., Martin, R.R. (eds) Mathematics of Surfaces. Lecture Notes in Computer Science, vol 2768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39422-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39422-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20053-6

  • Online ISBN: 978-3-540-39422-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics