Advertisement

Skeleton-Based Seam Computation for Triangulated Surface Parameterization

  • Xu-Ping Zhu
  • Shi-Min Hu
  • Ralph Martin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2768)

Abstract

Mesh parameterization is a key problem in digital geometry processing. By cutting a surface along a set of edges (a seam), one can map an arbitrary topology surface mesh to a single chart. Unfortunately, high distortion occurs when protrusions of the surface (such as fingers of a hand and horses’ legs) are flattened into a plane. This paper presents a novel skeleton-based algorithm for computing a seam on a triangulated surface. The seam produced is a full component Steiner tree in a graph constructed from the original mesh. By generating the seam so that all extremal vertices are leaves of the seam, we can obtain good parametrization with low distortion.

Keywords

Short Path Minimum Span Tree Travel Salesman Problem Steiner Tree Steiner Tree Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures in the plane. In: Proceedings of 2nd International Conference on Computing and Combinatorics, Hong Kong, pp. 117–126 (1996)Google Scholar
  2. 2.
    Allize, P., Meyer, M., Desbrun, M.: Interactive geometry remeshing. In: Proceedings of SIGGRAPH 2002. ACM Transaction on Graphics, vol. 21(3), pp. 347–354 (2002)Google Scholar
  3. 3.
    Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh (1976) Google Scholar
  4. 4.
    Cormen, T.H., Lieseron, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (2000)Google Scholar
  5. 5.
    Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. In: Proceedings of Eurographics 2002. Computer Graphics Forum, vol. 21(3), pp. 209–218 (2002)Google Scholar
  6. 6.
    Eck, M., Derose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution Analysis of Arbitrary Meshes. In: Proceedings of SIGGRAPH 1995. Computer Graphics, vol. 29, pp. 173–182 (1995)Google Scholar
  7. 7.
    Erickson, J., Har-peled, S.: Cutting a surface into a disk. In: Proceedings of the 18th ACM Symposium on Computational Geometry, pp. 244–253. ACM Press, New York (2002)Google Scholar
  8. 8.
    Floater, M.: Parameterization and smooth approximation of surface triangulations. Computer Aided Geometric Design 14(3), 231–250 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. In: Proceedings of SIGGRAPH 2003. ACM Transaction on Graphics, vol. 22(3) (2003)Google Scholar
  10. 10.
    Gu, X., Gortler, S., Hoppe, H.: Geometry images. In: Proceedings of SIGGRAPH 2002. ACM Transaction on Graphics, vol. 21(3), pp. 355–361 (2002)Google Scholar
  11. 11.
    Hochbaum, S.: Approximation Algorithms for NP-hard Problems. PWS Publishing Company (1997)Google Scholar
  12. 12.
    Khodakovsky, A., Litke, N., Schröder, P.: Globally smooth parameterizations with low distortion. In: Proceedings of SIGGRAPH 2003. ACM Transaction on Graphics, vol. 22(3) (2003)Google Scholar
  13. 13.
    Lee, A., Dobkin, D., Sweldens, W., Schröder, P.: Multiresolution mesh morphing. In: Proceedings of SIGGRAPH 1999, Computer Graphics, vol. 33, pp. 343–350 (1999)Google Scholar
  14. 14.
    Lee, A., Sweldens, W., Schröder, P., Cowsar, L., Dobkin, D.: MAPS: Multiresolution adaptive parameterization of surfaces. In: Proceedings of SIGGRAPH 1998. Computer Graphics, vol. 32, pp. 95–104 (1998)Google Scholar
  15. 15.
    Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: Proceedings of SIGGRAPH 2002. ACM Transaction on Graphics, vol. 21(3), pp. 362–371 (2002)Google Scholar
  16. 16.
    Piponi, D., Borshukov, G.D.: Seamless texture mapping of subdivision surfaces by model pelting and texture blending. In: Proceedings of SIGGRAPH 2000. Computer Graphics, vol. 34, pp. 471–478 (2000)Google Scholar
  17. 17.
    Praum, E., Hoppe, H.: Spherical parameterization and remeshing. In: Proceedings of SIGGRAPH 2003. ACM Transaction on Graphics, vol. 22(3) (2003)Google Scholar
  18. 18.
    Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Proceedings of the 11th annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, pp. 770–779 (2000)Google Scholar
  19. 19.
    Sander, S., Snyder, J., Gortler, P., Hoppe, H.: Texture mapping progressive meshes. In: Proceedings of SIGGRAPH 2001. Computer Graphics, vol. 35, pp. 409–416 (2001)Google Scholar
  20. 20.
    Sheffer, A.: Spanning tree seams for reducing parameterization distortion of triangulated surfaces. In: Wyvill, G. (ed.) Proceedings of Shape Modelling International 2002, pp. 61–68. IEEE CS Press, Los Alamitos (2002)CrossRefGoogle Scholar
  21. 21.
    Sheffer, A., Hart, J.S.: Inconspicuous low-distortion texture seam layout. In: Proceedings IEEE Visualization 2002, pp. 291–298. IEEE CS Press, Los Alamitos (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Xu-Ping Zhu
    • 1
  • Shi-Min Hu
    • 1
  • Ralph Martin
    • 2
  1. 1.Department of Computer Science and TechnologyTsinghua UniversityBeijingP. R. China
  2. 2.Department of Computer ScienceCardiff UniversityCardiffUK

Personalised recommendations