Skip to main content

Gamma-ray bursts—fireballs and blastwaves

  • Chapter
Gamma-Ray Bursts

Part of the book series: Springer Praxis Books ((ASTRONOMY))

  • 1025 Accesses

Abstract

The observational discoveries described in the previous chapters have led over the years to the development of the GRB’ standard model’ that describes the main properties of gamma-ray bursts with standard physics applied to somewhat ‘exotic’ objects. In this chapter we outline the most popular model to explain GRBs and their afterglows. This model, with its basic ingredients, has very often been called the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.5 References

  • Achterberg, A., et al. (2001) Particle acceleration by ultrarelativistic shocks: theory and simulations, Monthly Notices of the Royal Astronomical Society 328, 393–408.

    ADS  Google Scholar 

  • Atkins, R., et al. (2000) Evidence for TEV emission from GRB 970417A, Astrophysical Journal 533, L119–L122.

    ADS  Google Scholar 

  • Axford, W. I., Leer, E., & Skadron, G. (1978) The acceleration of cosmic rays by shock waves, International Cosmic Ray Conference 11, 132–137.

    Google Scholar 

  • Band, D., et al. (1993) BATSE observations of gamma-ray burst spectra. I—Spectral diversity, Astrophysical Journal 413, 281–292.

    ADS  Google Scholar 

  • Barraud, C., et al. (2004) Spectral analysis of 50 GRBs detected by HETE-2, Gamma-Ray Bursts: 30 Years of Discovery 727, 81–85.

    ADS  Google Scholar 

  • Bednarz, J., & Ostrowski, M. (1998) Energy spectra of cosmic rays accelerated at ultra-relativistic shock waves, Physical Review Letters 80, 3911–3914.

    ADS  Google Scholar 

  • Bell, A. R. (1978a) The acceleration of cosmic rays in shock fronts. II, Monthly Notices of the Royal Astronomical Society 182, 443–455.

    ADS  Google Scholar 

  • Bell, A. R. (1978b) The acceleration of cosmic rays in shock fronts. I, Monthly Notices of the Royal Astronomical Society 182, 147–156.

    ADS  Google Scholar 

  • Beloborodov, A. M. (2000) On the efficiency of internal shocks in gamma-ray bursts, Astrophysical Journal 539, L25–L28.

    ADS  Google Scholar 

  • Beloborodov, A. M., Stern, B. E., & Svensson, R. (1998) Self-similar temporal behavior of gamma-ray bursts, Astrophysical Journal 508, L25–L27.

    ADS  Google Scholar 

  • Berger, E., Kulkarni, S. R., & Frail, D. A. (2003) A standard kinetic energy reservoir in gamma-ray burst afterglows, Astrophysical Journal 590, 379–385.

    ADS  Google Scholar 

  • Berger, E., Kulkarni, S. R., & Frail, D. A. (2004) The nonrelativistic evolution of GRBs 980703 and 970508: beaming-independent calorimetry, Astrophysical Journal 612, 966–973.

    ADS  Google Scholar 

  • Berger, E., et al. (2003) A common origin for cosmic explosions inferred from calorimetry of GRB030329, Nature 426, 154–157.

    ADS  Google Scholar 

  • Björnsson, C.-I. (2001) Compton cooling in the afterglows of gamma-ray bursts: application to GRB 980923 and GRB 971214, Astrophysical Journal 554, 593–603.

    ADS  Google Scholar 

  • Blackman, E. G., & Yi, I. (1998) On fueling gamma-ray bursts and their afterglows with pulsars, Astrophysical Journal 498, L31.

    ADS  Google Scholar 

  • Blandford, R. D., & McKee, C. F. (1976) Fluid dynamics of relativistic blast waves, Physics of Fluids 19, 1130–1138.

    MATH  ADS  Google Scholar 

  • Blandford, R. D., & Ostriker, J. P. (1978) Particle acceleration by astrophysical shocks, Astrophysical Journal 221, L29–L32.

    ADS  Google Scholar 

  • Blinnikov, S. I., Kozyreva, A. V., & Panchenko, I. E. (1999) Gamma-ray bursts: when does a blackbody spectrum look non-thermal?, Astronomy Reports 43, 739–747.

    ADS  Google Scholar 

  • Cavallo, G., & Rees, M. J. (1978) A qualitative study of cosmic fireballs and gamma-ray bursts, Monthly Notices of the Royal Astronomical Society 183, 359–365.

    ADS  Google Scholar 

  • Cohen, E., et al. (1997) Possible evidence for relativistic shocks in gamma-ray bursts, Astrophysical Journal 488, 330.

    ADS  Google Scholar 

  • Crider, A., et al. (1997) Evolution of the low-energy photon spectral in gamma-ray bursts, Astrophysical Journal 479, L39.

    ADS  Google Scholar 

  • Daigne, F. (1999) PhD thesis [in French].

    Google Scholar 

  • Daigne, F., & Mochkovitch, R. (1998) Gamma-ray bursts from internal shocks in a relativistic wind: temporal and spectral properties, Monthly Notices of the Royal Astronomical Society 296, 275–286.

    ADS  Google Scholar 

  • Daigne, F., & Mochkovitch, R. (2000) Gamma-ray bursts from internal shocks in a relativistic wind: a hydrodynamical study, Astronomy and Astrophysics 358, 1157–1166.

    ADS  Google Scholar 

  • Daigne, F., & Mochkovitch, R. (2003) The physics of pulses in gamma-ray bursts: emission processes, temporal profiles and time-lags, Monthly Notices of the Royal Astronomical Society 342, 587–592.

    ADS  Google Scholar 

  • Dar, A., & de Rújula, A. (2004) Towards a complete theory of gamma-ray bursts, Physics Reports 405, 203–278.

    ADS  Google Scholar 

  • Derishev, E. V. (2006) Synchrotron emission in the fast cooling regime: which spectra can be explained?, ArXiv Astrophysics e-prints arXiv:astro-ph/0611260.

    Google Scholar 

  • Derishev, E. V., Kocharovsky, V. V., & Kocharovsky, V. V. (2001) Physical parameters and emission mechanism in gamma-ray bursts, Astronomy and Astrophysics 372, 1071–1077.

    ADS  Google Scholar 

  • Dermer, C. D., Böttcher, M., & Chiang, J. (1999) The external shock model of gamma-ray bursts: three predictions and a paradox resolved, Astrophysical Journal 515, L49–L52.

    ADS  Google Scholar 

  • Dermer, C. D., Chiang, J., & Mitman, K. E. (2000) Beaming, baryon loading, and the Synchrotron Self-Compton component in gamma-ray bursts, Astrophysical Journal 537, 785–795.

    ADS  Google Scholar 

  • Dermer, C. D., & Humi, M. (2001) Adiabatic losses and stochastic particle acceleration in gamma-ray burst blast waves, Astrophysical Journal 556, 479–493.

    ADS  Google Scholar 

  • Dermer, C. D., & Mitman, K. E. (1999) Short-timescale variability in the external shock model of gamma-ray bursts, Astrophysical Journal 513, L5–L8.

    ADS  Google Scholar 

  • Drenkhahn, G. (2002) Acceleration of GRB outflows by Poynting flux dissipation, Astronomy and Astrophysics 387, 714–724.

    ADS  Google Scholar 

  • Drenkhahn, G., & Spruit, H. C. (2002) Efficient acceleration and radiation in Poynting flux powered GRB outflows, Astronomy and Astrophysics 391, 1141–1153.

    ADS  Google Scholar 

  • Drenkhahn, G., & Spruit, H. C. (2004) Magnetically powered prompt radiation and flow acceleration in GRB, Astronomical Society of the Pacific Conference Series 312, 357.

    ADS  Google Scholar 

  • Ellison, D. C., & Double, G. P. (2002) Nonlinear particle acceleration in relativistic shocks, Astroparticle Physics 18, 213–228.

    ADS  Google Scholar 

  • Fenimore, E. E., Madras, C. D., & Nayakshin, S. (1996) Expanding relativistic sShells and gamma-ray burst temporal structure, Astrophysical Journal 473, 998.

    ADS  Google Scholar 

  • Fenimore, E. E., et al. (1995) Gamma-ray burst peak duration as a function of energy, Astrophysical Journal 448, L101.

    ADS  Google Scholar 

  • Fenimore, E. E., et al. (1999) Gamma-ray bursts and relativistic shells: the surface filling factor, Astrophysical Journal 512, 683–692.

    ADS  Google Scholar 

  • Fermi, E. (1949) On the origin of the cosmic radiation, Physical Review 75, 1169–1174.

    MATH  ADS  Google Scholar 

  • Freedman, D. L., & Waxman, E. (2001) On the energy of gamma-ray bursts, Astrophysical Journal 547, 922–928.

    ADS  Google Scholar 

  • Frontera, F., et al. (2000) Prompt and delayed emission properties of gamma-ray bursts observed with BeppoSAX, Astrophysical Journal Supplement Series 127, 59–78.

    ADS  Google Scholar 

  • Gallant, Y. A., & Achterberg, A. (1999) Ultra-high-energy cosmic ray acceleration by relativistic blast waves, Monthly Notices of the Royal Astronomical Society 305, L6–L10.

    ADS  Google Scholar 

  • Genet, F., Daigne, F., & Mochkovitch, R. (2006) Afterglow calculation in the electromagnetic model for gamma-ray bursts, Astronomy and Astrophysics 457, 737–740.

    ADS  Google Scholar 

  • Ghirlanda, G., Celotti, A., & Ghisellini, G. (2002) Time resolved spectral analysis of bright gamma ray bursts, Astronomy and Astrophysics 393, 409–423.

    ADS  Google Scholar 

  • Ghirlanda, G., Celotti, A., & Ghisellini, G. (2003) Extremely hard GRB spectra prune down the forest of emission models, Astronomy and Astrophysics 406, 879–892.

    ADS  Google Scholar 

  • Ghisellini, G., & Celotti, A. (1999) Quasi-thermal comptonization and GRBs, Astronomy and Astrophysics Supplement Series 138, 527–528.

    ADS  Google Scholar 

  • Ghisellini, G., Celotti, A., & Lazzati, D. (2000) Constraints on the emission mechanisms of gamma-ray bursts, Monthly Notices of the Royal Astronomical Society 313, L1–L5.

    ADS  Google Scholar 

  • Giannios, D. (2006) Flares in GRB afterglows from delayed magnetic dissipation, Astronomy and Astrophysics 455, L5–L8.

    ADS  Google Scholar 

  • Giannios, D., & Spruit, H. C. (2005) Spectra of Poynting-flux powered GRB outflows, Astronomy and Astrophysics 430, 1–7.

    ADS  Google Scholar 

  • Giannios, D., & Spruit, H. C. (2006) The role of kink instability in Poynting-flux dominated jets, Astronomy and Astrophysics 450, 887–898.

    MATH  ADS  Google Scholar 

  • Goodman, J. (1986) Are gamma-ray bursts optically thick?, Astrophysical Journal 308, L47–L50.

    ADS  Google Scholar 

  • Granot, J., Piran, T., & Sari, R. (1999) Synchrotron self-absorption in gamma-ray burst afterglow, Astrophysical Journal 527, 236–246.

    ADS  Google Scholar 

  • Granot, J., & Sari, R. (2002) The shape of spectral breaks in gamma-ray burst afterglows, Astrophysical Journal 568, 820–829.

    ADS  Google Scholar 

  • Guetta, D., Spada, M., & Waxman, E. (2001) Efficiency and spectrum of internal gamma-ray burst shocks, Astrophysical Journal 557, 399–407.

    ADS  Google Scholar 

  • Harrison, F. A., et al. (1999) Optical and radio observations of the afterglow from GRB 990510: evidence for a Jet, Astrophysical Journal 523, L121–L124.

    ADS  Google Scholar 

  • Heavens, A. F., & Drury, L. O. (1988) Relativistic shocks and particle acceleration, Monthly Notices of the Royal Astronomical Society 235, 997–1009.

    MATH  ADS  Google Scholar 

  • Hededal, C. B., et al. (2004) Non-Fermi power-law acceleration in astrophysical plasma shocks, Astrophysical Journal 617, L107–L110.

    ADS  Google Scholar 

  • Heinz, S., & Begelman, M. C. (1999) A shotgun model for gamma-ray bursts, Astrophysical Journal 527, L35–L38.

    ADS  Google Scholar 

  • Hurley, K., et al. (1994) Detection of a gamma-ray burst of very long duration and very high energy, Nature 372, 652

    ADS  Google Scholar 

  • Katz, J. I. (1994a) Delayed hard photons from gamma-ray bursts, Astrophysical Journal 432, L27–L29.

    ADS  Google Scholar 

  • Katz, J. I. (1994b) Low-frequency spectra of gamma-ray bursts, Astrophysical Journal 432, L107–L109.

    ADS  Google Scholar 

  • Katz, J. I., & Piran, T. (1997) Persistent counterparts to gamma-ray bursts, Astrophysical Journal 490, 772

    ADS  Google Scholar 

  • Kirk, J. G., et al. (2000) Particle acceleration at ultrarelativistic shocks: an eigenfunction method, Astrophysical Journal 542, 235–242.

    ADS  Google Scholar 

  • Kobayashi, S., Piran, T., & Sari, R. (1997) Can internal shocks produce the variability in gamma-ray bursts?, Astrophysical Journal 490, 92.

    ADS  Google Scholar 

  • Kobayashi, S., & Sari, R. (2001) Ultraefficient internal shocks, Astrophysical Journal 551, 934–939.

    ADS  Google Scholar 

  • Krymskii, G. F. (1977) A regular mechanism for the acceleration of charged particles on the front of a shock wave, Akademiia Nauk SSSR Doklady 234, 1306–1308.

    ADS  Google Scholar 

  • Kulkarni, S. R., et al. (1999) The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999, Nature 398, 389–394.

    ADS  Google Scholar 

  • Kumar, P. (1999) Gamma-ray burst energetics, Astrophysical Journal 523, L113–L116.

    ADS  Google Scholar 

  • Kumar, P. (2000) The distribution of burst energy and shock parameters for gamma-ray bursts, Astrophysical Journal 538, L125–L128.

    ADS  Google Scholar 

  • Kumar, P., & Piran, T. (2000a) Energetics and luminosity function of gamma-ray bursts, Astrophysical Journal 535, 152–157.

    ADS  Google Scholar 

  • Kumar, P., & Piran, T. (2000b) Some observational consequences of gamma-ray burst shock models, Astrophysical Journal 532, 286–293.

    ADS  Google Scholar 

  • Lebedev, S. V., et al. (2005) Magnetic tower outflows from a radial wire array Z-pinch, Monthly Notices of the Royal Astronomical Society 361, 97–108.

    ADS  Google Scholar 

  • Li, H., & Fenimore, E. E. (1996) Log-normal distributions in gamma-ray burst time histories, Astrophysical Journal 469, L115.

    ADS  Google Scholar 

  • Li, Z., Dai, Z. G., & Lu, T. (2002) Overall temporal synchrotron emissions from relativistic jets: adiabatic and radiative breaks, Monthly Notices of the Royal Astronomical Society 330, 955–964.

    ADS  Google Scholar 

  • Liang, E. P. (1997) Saturated Compton cooling model of cosmological gamma-ray bursts, Astrophysical Journal 491, L15.

    ADS  Google Scholar 

  • Liang, E., et al. (1997) Physical model of gamma-ray burst spectral evolution, Astrophysical Journal 479, L35.

    ADS  Google Scholar 

  • Liang, E. P., et al. (1999) GRB 990123: The case for saturated comptonization, Astrophysical Journal 519, L21–L24.

    ADS  Google Scholar 

  • Lithwick, Y., & Sari, R. (2001) Lower limits on Lorentz factors in gamma-ray bursts, Astrophysical Journal 555, 540–545.

    ADS  Google Scholar 

  • Lloyd, N. M., & Petrosian, V. (2000) Synchrotron radiation as the source of gamma-ray burst spectra, Astrophysical Journal 543, 722–732.

    ADS  Google Scholar 

  • Lyutikov, M. (2006) The electromagnetic model of gamma-ray bursts, New Journal of Physics 8, 119.

    ADS  Google Scholar 

  • Lyutikov, M., & Blackman, E. G. (2001) Gamma-ray bursts from unstable Poynting-dominated outflows, Monthly Notices of the Royal Astronomical Society 321, 177–186.

    ADS  Google Scholar 

  • Lyutikov, M., & Blandford, R. (2003) Gamma ray bursts as electromagnetic outflows, ArXiv Astrophysics e-prints arXiv:astro-ph/0312347.

    Google Scholar 

  • Matz, S. M., et al. (1985) High-energy emission in gamma-ray bursts, Astrophysical Journal 288, L37–L40.

    ADS  Google Scholar 

  • McBreen, B., et al. (1994) Lognormal distributions in gamma-ray bursts and cosmic lightning, Monthly Notices of the Royal Astronomical Society 271, 662.

    ADS  Google Scholar 

  • McKinney, J. C. (2006) General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems, Monthly Notices of the Royal Astronomical Society 368, 1561–1582.

    ADS  Google Scholar 

  • McMahon, E., Kumar, P., & Panaitescu, A. (2004) Prompt γ-ray and early afterglow emission in the external shock model, Monthly Notices of the Royal Astronomical Society 354, 915–923.

    ADS  Google Scholar 

  • Medvedev, M. V. (2000) Theory of ‘jitter’ radiation from small-scale random magnetic fields and prompt emission from gamma-ray burst shocks, Astrophysical Journal 540, 704–714.

    ADS  Google Scholar 

  • Mészáros, P. (2002) Theories of gamma-ray bursts, Annual Review of Astronomy and Astrophysics 40, 137–169.

    Google Scholar 

  • Mészáros, P. (2006) Gamma-ray bursts, Reports of Progress in Physics 69, 2259–2322.

    Google Scholar 

  • Mészáros, P., Laguna, P., & Rees, M. J. (1993) Gasdynamics of relativistically expanding gamma-ray burst sources—kinematics, energetics, magnetic fields, and efficiency, Astrophysical Journal 415, 181–190.

    ADS  Google Scholar 

  • Mészáros, P., & Rees, M. J. (1993a) Gamma-ray bursts: multiwaveband spectral predictions for blast wave models, Astrophysical Journal 418, L59.

    ADS  Google Scholar 

  • Mészáros, P., & Rees, M. J. (1993b) Relativistic fireballs and their impact on external matter—models for cosmological gamma-ray bursts, Astrophysical Journal 405, 278–284.

    ADS  Google Scholar 

  • Mészáros, P., & Rees, M. J. (1997) Optical and long-wavelength afterglow from gamma-ray bursts, Astrophysical Journal 476, 232.

    ADS  Google Scholar 

  • Mészáros, P., & Rees, M. J. (2000) Steep slopes and preferred breaks in gamma-ray burst spectra: the role of photospheres and comptonization, Astrophysical Journal 530, 292–298.

    ADS  Google Scholar 

  • Mészáros, P., Rees, M. J., & Papathanassiou, H. (1994) Spectral properties of blast-wave models of gamma-ray burst sources, Astrophysical Journal 432, 181–193.

    ADS  Google Scholar 

  • Mészáros, P., Rees, M. J., & Wijers, R. A. M. J. (1998) Viewing angle and environment effects in gamma-ray bursts: sources of afterglow diversity, Astrophysical Journal 499, 301.

    ADS  Google Scholar 

  • Mochkovitch, R., Maitia, V., & Marques, R. (1995) Internal shocks in a relativistic wind as a source for gamma-ray bursts?, Astrophysics and Space Science 231, 441–444.

    ADS  Google Scholar 

  • Nakar, E., & Piran, T. (2002) Gamma-ray burst light curves—another clue on the inner engine, Astrophysical Journal 572, L139–L142.

    ADS  Google Scholar 

  • Narayan, R., Paczyński, B., & Piran, T. (1992) Gamma-ray bursts as the death throes of massive binary stars, Astrophysical Journal 395, L83–L86.

    ADS  Google Scholar 

  • Nousek, J. A., et al. (2006) Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data, Astrophysical Journal 642, 389–400.

    ADS  Google Scholar 

  • Paczyński, B. (1986) Gamma-ray bursters at cosmological distances, Astrophysical Journal 308, L43–L46.

    ADS  Google Scholar 

  • Paczyński, B., & Rhoads, J. E. (1993) Radio transients from gamma-ray bursters, Astrophysical Journal 418, L5.

    ADS  Google Scholar 

  • Paesold, G., Blackman, E. G., & Messmer, P. (2005) On particle acceleration and trapping by Poynting flux dominated flows, Plasma Physics and Controlled Fusion 47, 1925–1947.

    ADS  Google Scholar 

  • Panaitescu, A., & Kumar, P. (2000) Analytic light curves of gamma-ray burst afterglows: homogeneous versus wind external media, Astrophysical Journal 543, 66–76.

    ADS  Google Scholar 

  • Panaitescu, A., & Kumar, P. (2001) Fundamental physical parameters of collimated gamma-ray burst afterglows, Astrophysical Journal 560, L49–L53.

    ADS  Google Scholar 

  • Panaitescu, A., & Mészáros, P. (1998) Simulations of gamma-ray bursts from external shocks: time variability and spectral correlations, Astrophysical Journal 492, 683.

    ADS  Google Scholar 

  • Panaitescu, A., & Mészáros, P. (2000) Gamma-ray bursts from upscattered self-absorbed synchrotron emission, Astrophysical Journal 544, L17–L21.

    ADS  Google Scholar 

  • Panaitescu, A., Spada, M., & Mészáros, P. (1999) Power density spectra of gamma-ray bursts in the internal shock model, Astrophysical Journal 522, L105–L108.

    ADS  Google Scholar 

  • Panaitescu, A., et al. (2006) Evidence for chromatic X-ray light-curve breaks in Swift gamma-ray burst afterglows and their theoretical implications, Monthly Notices of the Royal Astronomical Society 369, 2059–2064.

    ADS  Google Scholar 

  • Piran, T. (1999) Gamma-ray bursts and the fireball model, Physics Reports 314, 575–667.

    ADS  Google Scholar 

  • Piran, T. (2005) The physics of gamma-ray bursts, Reviews of Modern Physics 76, 1143–1210.

    ADS  Google Scholar 

  • Piran, T., et al. (2001) The energy of long-duration gamma-ray bursts, Astrophysical Journal 560, L167–L169.

    ADS  Google Scholar 

  • Preece, R. D., et al. (1998) The synchrotron shock model confronts a ‘line of death’ in the BATSE gamma-ray burst data, Astrophysical Journal 506, L23–L26.

    ADS  Google Scholar 

  • Preece, R. D., et al. (2002) On the consistency of gamma-ray burst spectral indices with the synchrotron shock model, Astrophysical Journal 581, 1248–1255.

    ADS  Google Scholar 

  • Ramirez-Ruiz, E., & Fenimore, E. E. (2000) Pulse width evolution in gamma-ray bursts: evidence for internal shocks, Astrophysical Journal 539, 712–717.

    ADS  Google Scholar 

  • Rees, M. J., & Mészáros, P. (1992) Relativistic fireballs—energy conversion and time-scales, Monthly Notices of the Royal Astronomical Society 258, 41P–43P.

    ADS  Google Scholar 

  • Rees, M. J., & Mészáros, P. (1994) Unsteady outflow models for cosmological gamma-ray bursts, Astrophysical Journal 430, L93–L96.

    ADS  Google Scholar 

  • Rieger, F. M., & Duffy, P. (2005) Particle acceleration in gamma-ray burst jets, Astrophysical Journal 632, L21–L24.

    ADS  Google Scholar 

  • Roming, P. W. A., et al. (2006) Very early optical afterglows of gamma-ray bursts: evidence for relative paucity of detection, Astrophysical Journal 652, 1416–1422.

    ADS  Google Scholar 

  • Rybicki, G. B., & Lightman, A. P. (1979) Radiative Processes in Astrophysics, New York, Wiley-Interscience.

    Google Scholar 

  • Sari, T. (1977) Hydrodynamics of gamma-ray burst afterglow, Astrophysical Journal 489, L37–L40.

    ADS  Google Scholar 

  • Sari, R., & Esin, A. A. (2001) On the synchrotron self-Compton emission from relativistic shocks and its implications for gamma-ray burst afterglows, Astrophysical Journal 548, 787–799.

    ADS  Google Scholar 

  • Sari, R., Narayan, R., & Piran, T. (1996) Cooling timescales and temporal structure of gamma-ray bursts, Astrophysical Journal 473, 204.

    ADS  Google Scholar 

  • Sari, R., & Piran, T. (1995) Hydrodynamic timescales and temporal structure of gamma-ray bursts, Astrophysical Journal 455, L143.

    ADS  Google Scholar 

  • Sari, R., & Piran, T. (1997a) Variability in gamma-ray bursts: a clue, Astrophysical Journal 485, 270.

    ADS  Google Scholar 

  • Sari, R., & Piran, T. (1997b) Cosmological gamma-ray bursts: internal versus external shocks, Monthly Notices of the Royal Astronomical Society 287, 110–116.

    ADS  Google Scholar 

  • Sari, R., Piran, T., & Narayan, R. (1998) Spectra and light curves of gamma-ray burst afterglows, Astrophysical Journal 497, L17.

    ADS  Google Scholar 

  • Sari, R., Piran, T., & Halpern, J. P. (1999) Jets in gamma-ray bursts, Astrophysical Journal 519, L17–L20.

    ADS  Google Scholar 

  • Schmidt, W. K. H. (1978) Distance limit for a class of model gamma-ray burst sources, Nature 519, 525–527.

    ADS  Google Scholar 

  • Shaviv, N. J., & Dar, A. (1995) Gamma-Ray Bursts from Minijets, Astrophysical Journal 447, 863

    ADS  Google Scholar 

  • Smolsky, M. V., & Usov, V. V. (2000) Nonthermal radiation of cosmological gamma-ray bursters, Astrophysical Journal 531, 764–775.

    ADS  Google Scholar 

  • Soderberg, A. M., & Fenimore, E. E. (2001) The unique signature of shell curvature in gamma-ray bursts, Gamma-Ray Bursts in the Afterglow Era 87.

    Google Scholar 

  • Spada, M., Panaitescu, A., & Mészáros, P. (2000) Analysis of temporal features of gamma-ray bursts in the internal shock model, Astrophysical Journal 537, 824–832.

    ADS  Google Scholar 

  • Spruit, H. C., & Drenkhahn, G. D. (2004) Magnetically powered prompt radiation and flow acceleration in GRB, Astronomical Society of the Pacific Conference Series 312, 357.

    ADS  Google Scholar 

  • Stern, B. (1999) Relativistic outflows in gamma ray bursts, High Energy Processes in Accreting Black Holes 161, 277.

    ADS  Google Scholar 

  • Tavani, M. (1996) A shock emission model for gamma-ray bursts. II. Spectral properties, Astrophysical Journal 466, 768.

    ADS  Google Scholar 

  • Thompson, C. (1994) A model of gamma-ray bursts, Monthly Notices of the Royal Astronomical Society 270, 480.

    ADS  Google Scholar 

  • Thompson, C., et al. (1994) Physical processes in eclipsing pulsars: eclipse mechanisms and diagnostics, Astrophysical Journal 422, 304–335.

    ADS  Google Scholar 

  • Thompson, T. A. (2005) Millisecond proto-magnetars and gamma ray bursts, Nuovo Cimento C, Geophysics Space Physics C 28, 583.

    ADS  Google Scholar 

  • Thompson, T. A., Chang, P., & Quataert, E. (2004) Magnetar spin-down, hyperenergetic supernovae, and gamma-ray bursts, Astrophysical Journal 611, 380–393.

    ADS  Google Scholar 

  • Usov, V. V. (1992) Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts, Nature 357, 472–474.

    ADS  Google Scholar 

  • Uzdensky, D. A., & MacFadyen, A. I. (2006) Stellar explosions by magnetic towers, Astrophysical Journal 647, 1192–1212.

    ADS  Google Scholar 

  • Vietri, M. (1995) The acceleration of ultra-high-energy cosmic rays in gamma-ray bursts, Astrophysical Journal 453, 883.

    ADS  Google Scholar 

  • Vietri, M. (1997) The soft X-ray afterglow of gamma-ray bursts, a stringent test for the fireball model, Astrophysical Journal 478, L9.

    ADS  Google Scholar 

  • Vietri, M. (2003) On particle acceleration around shocks. I, Astrophysical Journal 591, 954–961.

    ADS  Google Scholar 

  • Vlahakis, N., & Königl, A. (2003) Relativistic magnetohydrodynamics with application to gamma-ray burst outflows. I. Theory and semianalytic trans-Alfvénic solutions, Astrophysical Journal 596, 1080–1103.

    ADS  Google Scholar 

  • Wang, X. Y., Dai, Z. G., & Lu, T. (2001) The inverse Compton emission spectra in the very early afterglows of gamma-ray bursts, Astrophysical Journal 556, 1010–1016.

    ADS  Google Scholar 

  • Waxman, E. (1997a) Gamma-ray burst afterglow: confirming the cosmological fireball model, Astrophysical Journal 489, L33.

    ADS  Google Scholar 

  • Waxman, E. (1997b) Gamma-ray-burst afterglow: supporting the cosmological fireball model, constraining parameters, and making predictions, Astrophysical Journal 485, L5.

    ADS  Google Scholar 

  • Wei, D. M., & Lu, T. (1998) Diverse temporal properties of gamma-ray burst afterglows, Astrophysical Journal 505, 252–254.

    ADS  Google Scholar 

  • Wijers, R. A. M. J., & Galama, T. J. (1999) Physical parameters of GRB 970508 and GRB 971214 from their afterglow synchrotron emission, Astrophysical Journal 523, 177–186.

    ADS  Google Scholar 

  • Wu, X. F., et al. (2005) Analytical light curves in the realistic model for gamma-ray burst afterglows, Astrophysical Journal 619, 968–982.

    ADS  Google Scholar 

  • Zhang, B., & Kobayashi, S. (2005) Gamma-ray burst early afterglows: reverse shock emission from an arbitrarily magnetized ejecta, Astrophysical Journal 628, 315–334.

    ADS  Google Scholar 

  • Zhang, B., & Mészáros, P. (2001) High-energy spectral components in gamma-ray burst afterglows, Astrophysical Journal 559, 110–122.

    ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

(2009). Gamma-ray bursts—fireballs and blastwaves. In: Gamma-Ray Bursts. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39088-6_5

Download citation

Publish with us

Policies and ethics