Skip to main content

Special Techniques in SEM

  • Chapter
Book cover Scanning Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 45))

  • 5372 Accesses

Abstract

Magnetic stray fields in front of the specimen can be detected by the deflection of secondary electrons by the Lorentz force (magnetic contrast type—1) or by the deflection of primary electrons incident parallel to the surface. The Lorentz force due the internal magnetization affect the trajectories of backscattered electrons, resulting in type—2 magnetic contrast. The surface magnetization can be analysed by detecting the spin-polarization of SE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Kitakami, T. Sakurai, Y. Shimada: High density recorded patterns observed by high-resolution Bitter SEM method. J. Appl. Phys. 79, 6074 (1996)

    ADS  Google Scholar 

  2. O.C. Wells: Some theoretical aspects of type-1 magnetic contrast in the SEM. J. Microsc. 139, 187 (1985)

    Google Scholar 

  3. J.R. Dorsey: Scanning electron probe measurements of magnetic fields. In Electron Probe Microanalysis, ed. by A.J. Tousimis and L. Marton: Adv. Electr. Electron Physics, Supp1. 6 ( Academic, New York 1969 ) p. 291

    Google Scholar 

  4. D.C. Joy, J.P. Jacubovics: Direct observation of magnetic domains by SEM. Phil. Mag. 17, 61 (1968); J. Phys. D 2, 1367 (1969)

    Google Scholar 

  5. G.W. Kammlott: Observation of ferromagnetic domains with the SEM. J. Appl. Phys. 42, 5156 (1971)

    ADS  Google Scholar 

  6. J.R. Banbury, W.C. Nixon: The direct observation of domain structure and magnetic fields in the SEM. J. Sci. Instr. 44, 889 (1967)

    ADS  Google Scholar 

  7. G.A. Jones: On the quality of type 1 magnetic contrast obtained in the SEM. Phys. Stat. Solidi (a) 36, 647 (1976)

    ADS  Google Scholar 

  8. J.R. Banbury, W.C. Nixon: A high-contrast directional detector for the SEM. J. Phys. E 2, 1055 (1969)

    ADS  Google Scholar 

  9. P. Gentsch, L. Reimer: Messungen zum magnetischen Kontrast im Rasterelektronenmikroskop. Beitr. elektr. mikr. Direktabb. Oberfl. 5, 299 (1972)

    Google Scholar 

  10. Ji Yuan, R. Senkel, L. Reimer: Recording of magnetic contrast type I by a two-detector system. Scanning 9, 249 (1987)

    Google Scholar 

  11. G.A. Wardly: Magnetic contrast in the SEM. J. Appl. Phys. 42, 376 (1971)

    ADS  Google Scholar 

  12. W.K. Chim: An analytical model for SEM type-1 magnetic contrast with energy filtering. Rev. Sci. Instr. 65, 374 (1994)

    ADS  Google Scholar 

  13. T. Yamamoto, K. Tsuno: Magnetic contrast in SE images of uniaxial ferromagnetic materials obtained by SEM. Phys. Stat. Solidi (a) 28, 479 (1975)

    ADS  Google Scholar 

  14. D.J. Fathers, J.P. Jacubovics, D.C. Joy, D.E. Newbury, H. Yakowitz: A new method of observing magnetic domains by SEM. Phys. Stat. Solidi (a) 20, 535 (1973); 22, 609 (1974)

    Google Scholar 

  15. D.E. Newbury, H. Yakowitz, R.L. Myklebust: Monte Carlo calculations of magnetic contrast from cubic materials in the SEM. Appl. Phys. Lett. 23, 488 (1973)

    ADS  Google Scholar 

  16. T. Yamamoto. H. Nishizawa, K. Tsuno: Magnetic domain contrast in BSE images obtained with a SEM. Phil. Mag. 34, 311 (1976)

    ADS  Google Scholar 

  17. K. Tsuno, T. Yamamoto: Observed depths of magnetic domains in highvoltage SEM. Phys. Stat. Solidi (a) 35, 437 (1976)

    ADS  Google Scholar 

  18. O.C. Wells: Effect of collector position on type-2 magnetic contrast in the SEM. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 293

    Google Scholar 

  19. O.C. Wells: Effects of collector take-off angle and energy filtering on the BSE image in the SEM. Scanning 2, 199 (1979)

    Google Scholar 

  20. D.E. Newbury: The utility of specimen current imaging in the SEM. SEM 1976/I ( ITTRI, Chicago 1976 ) p. 111

    Google Scholar 

  21. A.R. Walker, G.R. Booker: A simple energy filtering BSE detector. In Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ), p. 119

    Google Scholar 

  22. L. Pogany, K. Ramstock, A. Hubert: Quantitative magnetic contrast — Part I: Experiment. Scanning 14, 263 (1992)

    Google Scholar 

  23. P.J. Grundy, R.S. ‘Pebble: Lorentz electron microscopy. Adv. Physics 17, 153 (1968)

    ADS  Google Scholar 

  24. J.N. Chapman, E.M. Waddell, P.E. Batson, R.P. Ferrier: The Fresnel mode of Lorentz microscopy using a STEM. Ultramicroscopy 4, 283 (1979)

    Google Scholar 

  25. L. Marton, S.H. Lachenbruch: Electron optical mapping of electromagnetic fields. J. Appl. Phys. 20, 1171 (1949)

    ADS  Google Scholar 

  26. Ch. Schwink: Uber neue quantitative Verfahren der elektronenoptischen Schattenmethode. Optik 12, 481 (1955)

    Google Scholar 

  27. R.F.M. Thornley, J.D. Hutchison: Magnetic field measurements in the SEM. Appl. Phys. Lett. 13, 249 (1968)

    ADS  Google Scholar 

  28. T. Ishiba, H. Suzuki: Measurements of magnetic field of magnetic recording head by a SEM. Jpn. J. Appl. Phys, 13, 457 (1974)

    ADS  Google Scholar 

  29. M.D. Coutts, E.R. Levin: Examination of local magnetic fields by SEM. In Microscopic Electronique 1970, Vol. 1, ed. by P. Favard ( Soc. Française Micr. Electronique, Paris 1970 ) p. 261

    Google Scholar 

  30. E.I. Rau, G.V. Spivak: SEM of two-dimensional magnetic stray fields. Scanning 3, 27 (1980)

    Google Scholar 

  31. ] J.B. Elsbrock, L.J. Balk: Quantitative evaluation of micromagnetic fields by means of a SEM. SEM 1984/I (SEM Inc., AMF O’Hare, IL 1984) p.131 [

    Google Scholar 

  32. J. Kessler: Polarized Electrons, 2nd edn., Springer Ser. Atoms Plasmas, Vol. 1 ( Springer, Berlin, Heidelberg 1985 )

    Google Scholar 

  33. N. Müller, W. Eckstein, W. Heiland: Electron spin polarization in field emission from EuS-coated tungsten tip. Phys. Rev. Lett. 29, 1651 (1972)

    ADS  Google Scholar 

  34. D.T. Pierce, R.J. Celotta, G.C. Wang, W.N. Unertl, A. Galejs, C.E. Kuyatt, S.R. Mielczarek: GaAs spin polarized electron source. Rev. Sci. Instr. 51, 478 (1980)

    ADS  Google Scholar 

  35. E. Kisker, W. Gudat, K. Schröder: Observation of a high spin polarization of secondary electrons from single crystal Fe and Co. Sol. State Commun. 44, 591 (1982)

    ADS  Google Scholar 

  36. K. Koike, K. Hayakawa: Scanning electron microscope observation of magnetic domains using spin-polarized secondary electrons. Jpn. J. Appl. Phys. 23, L187 (1984)

    ADS  Google Scholar 

  37. H.P. Oepen, J. Kirschner: Imaging of magnetic microstructures at surfaces: The scanning electron microscope with spin polarization analysis. Scanning Microscopy 5, 1 (1991)

    Google Scholar 

  38. J. Kirschner, R. Feder: Spin polarization in double diffraction of lowenergy electrons from W(001): experiment and theory. Phys. Rev. Lett. 42, 1008 (1979)

    ADS  Google Scholar 

  39. J. Kirschner: Polarized electrons at surfaces (Springer, Berlin, Heidelberg 1985 )

    Google Scholar 

  40. D.T. Pierce, S.M. Girvin, J. Unguris, R.J. Celotta: Absorbed current spin polarization detector. Rev. Sci. Instr. 52, 1437 (1981)

    ADS  Google Scholar 

  41. H.C. Siegmann, D.T. Pierce, R.J. Celotta: Spin-dependent absorption of electrons in a ferromagnetic metal. Phys. Rev. Lett. 46, 452 (1981)

    ADS  Google Scholar 

  42. K. Koike, H. Matsuyama, K. Hayakawa: Spin-polarized SEM equipped with a thumb-sized spin detector. Jpn. J. Appl. Phys. 27, L1352 (1988)

    ADS  Google Scholar 

  43. J. Unguris, D.T. Pierce, R.J. Celotta: Low-energy diffuse scattering electron-spin polarization analyzer. Rev. Sci. Instr. 57, 1314 (1986)

    ADS  Google Scholar 

  44. J. Unguris, D.T. Pierce, A. Galejs, R.J. Celotta: Spin and energy analysed secondary electron emission from a ferromagnet. Phys. Rev. Lett. 49, 72 (1982)

    ADS  Google Scholar 

  45. T. Kohashi, H. Matsuyama, K. Koike: A spin rotator for detecting all three magnetization vector components by spin-polarized SEM. Rev. Sci. Instr. 66, 5537 (1995)

    ADS  Google Scholar 

  46. D.T. Pierce, R.J. Celotta: Spin polarization in electron scattering from surfaces. Adv. Electr. Electron Phys. 56, 219 (1981)

    Google Scholar 

  47. surface. Jpn. J. Appl. Phys. 22, 1332 (1983)

    Google Scholar 

  48. S. Kimoto, H. Hashimoto, K. Mase: Voltage contrast in SEM. In Electron Microscopy 1968, Vol. 1, ed. by D.S. Bocciarelli ( Tipografia Poliglotta Vaticana, Rome 1968 ) p. 83

    Google Scholar 

  49. P. Gentsch: Potentialkontrast and magnetischer Kontrast im Rasterelektronenmikroskop. Diplomarbeit, Münster 1970

    Google Scholar 

  50. J.R. Banbury, W.C. Nixon: Voltage measurement in the SEM. SEM 1970 ( ITTRI, Chicago 1970 ) p. 473

    Google Scholar 

  51. H. Yakowitz, J.P. Ballantyne, E. Munro, W.C. Nixon: The cylindrical SE detector as a voltage measuring device in the SEM. SEM 1972 ( ITTRI, Chicago 1972 ) p. 33

    Google Scholar 

  52. G.Y. Robinson, R.M. White: SEM of ferroelectric domains in barium titanate. Appl. Phys. Lett. 10, 320 (1967)

    ADS  Google Scholar 

  53. D.G. Coates, N. Shaw: Direct observation of ferroelectric domains in triglycine sulphate using the SEM. In Microscopie Electronique 1970, Vol. 1, ed. by P. Favard ( Soc. Française Micr. Electronique, Paris 1970 ) p. 259

    Google Scholar 

  54. R. Le Bihan, M. Maussion: Observation des domaines ferroélectriques au microscope électronique à balayage. Rev. Phys. Appl. 9, 427 (1974)

    Google Scholar 

  55. R. Le Bihan, M. Maussion: Study of the surface of ferroelectric crystals with the SEM. Ferroelectrics 7, 307 (1974)

    Google Scholar 

  56. M. Maussion, R. Le Bihan: Study of ferroelectric domains on KD2PO4 and BaTiO3 crystals with the SEM. Ferroelectrics 13, 465 (1976)

    Google Scholar 

  57. Y. Uchikawa, S. Ikeda: Application of SEM to analysis of surface domain structure of ferroelectrics. SEM 1981/I ( SEM Inc., AMF O’Hare, IL 1981 ) p. 209

    Google Scholar 

  58. R. Godehardt, J. Landgraf: SEM investigations of charge distributions and stray fields of ferroelectric samples. Beitr. elektr. mikr. Direktabb. Oberfl. 25, 19 (1992)

    Google Scholar 

  59. H. Bahadur, R. Parshad: SEM of vibrating quartz crystals — a review. SEM 1980/I ( SEM Inc., AMF O’Hare, IL 1980 ) p. 509

    Google Scholar 

  60. H.P. Feuerbaum, G. Eberharter, G. Tobolka: Visualization of traveling surface acoustic waves using a SEM. SEM 1980/I ( SEM Inc., AMF O’Hare, IL 1980 ) p. 503

    Google Scholar 

  61. D.V. Roshchupkin, M. Brunel: SEM visualization of surface acoustic wave propagation in a LiNbO3 crystal. Acustica 81, 173 (1995)

    Google Scholar 

  62. D.V. Roshchupkin, M. Brunel: SEM observation of the voltage contrast image of the ferroelectric domain structure in the LiNbO3 crystal. Scanning Microscopy 7, 543 (1993)

    Google Scholar 

  63. D.V. Roshchupkin, Th. Fournier, M. Brunel, O.A. Plotitsyna, N.G. Sorokin: SEM observation of the interaction between the surface acoustic waves and regular domain structures in the LiNbO3 crystals. Scanning Microscopy 6, 367 (1992)

    Google Scholar 

  64. N.C. MacDonald: Auger electron spectroscopy in SEM: potential measurements. Appl. Phys. Lett. 16, 76 (1970)

    ADS  Google Scholar 

  65. W.R. Hardy, S.K. Behera, D. Cavan: A voltage contrast deetctor for the SEM. J. Phys. E 8, 789 (1975)

    ADS  Google Scholar 

  66. E. Menzel, E. Kubalek: SE detection systems for quantitative voltage measurements. Scanning 5, 151 (1983)

    Google Scholar 

  67. A.P. Janssen, P. Akhter, C.J. Harland, J.A. Venables: High spatial resolution surface potential measurements using SE. Surf. Sci. 93, 453 (1980)

    ADS  Google Scholar 

  68. A. Gopinath, C.C. Sanger: A technique for the linearization of voltage contrast in the SEM. J. Phys. E 4, 334 (1971)

    ADS  Google Scholar 

  69. A. Khursheed, A.R. Dinnis: A comparison of voltage contrast detectors Scanning 6, 85 (1984)

    Google Scholar 

  70. A. Gopinath: Estimate of minimum measurable voltage in the SEM. J. Phys. E 10, 911 (1977)

    ADS  Google Scholar 

  71. E. Menzel, E. Kubalek: Fundamentals of electron beam testing of integrated circuits. Scanning 5, 103 (1983)

    Google Scholar 

  72. Y. Petit-Clerc, J.D. Carette: Effect of temperature on surface charges caused by an incident electron beam on a metallic surface. Appl. Phys. Lett. 12, 227 (1968)

    ADS  Google Scholar 

  73. D.M. Taylor: The effect of passivation on the observation of voltage contrast in the SEM. J. Phys. D 11, 2443 (1978)

    ADS  Google Scholar 

  74. D.L. Crosthwait, F.W. Ivy: Voltage contrast methods for semiconductor device failure analysis. SEM 1974 ( IITRI, Chicago 1974 ) p. 935

    Google Scholar 

  75. G.V. Lukianoff, T.R. Touw: Voltage coding: temporal versus spatial fre- quencies. SEM 1975 ( ITTRI, Chicago 1975 ) p. 465

    Google Scholar 

  76. K. Nakamae, H. Fujioka, K. Ura: Accurate measurement of the operating frequency in ICs with the SEM. J. Phys. E 21, 913 (1988)

    ADS  Google Scholar 

  77. H.P. Feuerbaum, D. Kantz, E. Wolfgang, E. Kubalek: Quantitative measurement with high time resolution of internal waveform on MOS RAMS using a modified SEM. IEEE J. Solid State Circuits SC-13, 319 (1978)

    Google Scholar 

  78. H. Fujioka, K. Nakamae, K. Ura: Function testing of bipolar ICs and LSIs with the stroboscopic SEM. IEEE J. Solid State Circuits SC-15, 177 (1980)

    Google Scholar 

  79. H. Fujioka, K. Ura: Waveform measurements on gigahertz semiconductor devices by SEM stroboscopy. Appl. Phys. Lett. 39, 81 (1981)

    ADS  Google Scholar 

  80. H. Fujioka, H. Kunizawa, K. Ura: 0.1 ps resolution delay circuit for wave- form measurements in the stroboscopic SEM. J. Phys. E 19, 1025 (1986)

    ADS  Google Scholar 

  81. F.1\4. Boland, E.R. Lynch: Analysis of the stroboscopic waveform mode in SEM. J. Phys. E 20, 1011 (1987)

    ADS  Google Scholar 

  82. E. Menzel, E. Kubalek: Electron beam test techniques for integrated circuits. SEM 1981/I ( SEM Inc., AMF O’Hare, IL 1981 ) p. 305

    Google Scholar 

  83. E. Wolfgang: Electron beam testing: problems in practice. Scanning 5, 71 (1983)

    Google Scholar 

  84. Y. Watanabe, Y. Fukuda, T. Jinno: Analysis of capacitive coupling voltage contrast in SEM. Jpn. J. Appl. Phys. 24, 1294 (1985)

    ADS  Google Scholar 

  85. E.I. Cole, C.R. Bagnell, B. Davies, A. Neascu, W. Oxford, S. Roy, R.H. Propst: A novel method for depth profiling and imaging of semiconductor devices using capacitive coupling voltage contrast. J. Appl. Phys. 62, 4909 (1987)

    ADS  Google Scholar 

  86. W. Reiners, K.D. Herrmann, E. Kubalek: Electron beam testing of passivated devices via capacitive coupling voltage contrast. Scanning Microscopy 2, 161 (1988)

    Google Scholar 

  87. W. Reiners: Fundamentals of electron beam testing via capacitive coupling voltage contrast. Microelect. Eng. 12, 325 (1990)

    Google Scholar 

  88. M. Batinic, S. Görlich, K.D. Herrmann: On geometrical dependencies of capacitive coupling voltage contrast. Microelectr. Eng. 12, 341 (1990)

    Google Scholar 

  89. W. Mertin, K.D. Herrmann, E. Kubalek: The capacitive coupling voltage error and the capacitive coupling cross talk in electron beam testing of passivated IC and measures for their reduction. Microelectr. Eng. 12, 349 (1990)

    Google Scholar 

  90. V.V. Aristov, O. Kononchuk, E.I. Rau, E.B. Yakimov: SEM investigation of semiconductors by the capacitance technique. Microelectr. Eng. 12, 179 (1990)

    Google Scholar 

  91. J. Kirschner: Threshold spectroscopies and prospects for their application in the SEM. SEM 1983/IV ( SEM Inc., AMF O’Hare, IL 1983 ) p. 1665

    Google Scholar 

  92. H.J. Fitting, D. Hecht: Secondary electron field emission. Phys. Stat. Solidi (a) 108, 265 (1988)

    ADS  Google Scholar 

  93. H.J. Fitting, P. Magdanz, W. Mehnert, D. Hecht, Th. Hingst: Charge trap spectroscopy in single and multiple layer dielectrics. Phys. Stat. Solidi (a) 122, 297 (1990)

    ADS  Google Scholar 

  94. H.J. Fitting, Th. Hingst, R. Franz, E. Schreiber: Electron trap microscopy — a new mode for SEM. Scanning Microscopy 8, 165 (1994)

    Google Scholar 

  95. E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy. Optik 31, 258 and 359 (1970)

    Google Scholar 

  96. L. Reimer, K.H. Sommer: Messungen und Berechnungen zum elektronenmikroskopischen Streukontrast für 17–1200 keV Elektronen. Z. Naturforschg. 23a, 1569 (1968)

    Google Scholar 

  97. U. Golla, B. Schindler, L. Reimer: Contrast in the transmission mode of a LVSEM. J. Microsc. 173, 219 (1994)

    Google Scholar 

  98. J. Weise: Messung des Materialtransportes in dünnen Al-Filmen mit dem Raster-Elektronenmikroskop. Beitr. elektr. mikr. Direktabb. Oberft. 4/2, 477 (1971)

    Google Scholar 

  99. P. Furrer: Verbindung von Raster- und Durchstrahlungselektronenmikroskopie zur Untersuchung des Ausscheidungsverlaufs in dünnen Folien. Beitr. elektr. mikr. Direktabb. Oberft. 4 /2, 463 (1971)

    Google Scholar 

  100. R. Blaschke: Ein Präparathalter für Durchstrahlungsexperimente und für Stereobildpaare. Beitr. elektr. mikr. Direktabb. Oberft. 3, 161 (1970)

    Google Scholar 

  101. B.J. Crawford, C.R.W. Liley: A simple transmission stage using the standard collection system in the SEM. J. Phys. E 3, 461 (1970)

    ADS  Google Scholar 

  102. J.A. Swift, A.C. Brown, C.A. Saxton: STEM with the Cambridge Stereoscan Mk II. J. Phys. E 2, 744 (1969)

    ADS  Google Scholar 

  103. A. Ishikawa, F. Mizuno, Y. Uchikawa, S. Maruse: High resolution and spectroscopic cathodoluminescent images in SEM. Jpn. J. Appl. Phys. 12, 286 (1973)

    ADS  Google Scholar 

  104. A.B. Bok: Mirror electron microscopy: theory and applications. In Modern Diffraction and Imaging Methods in Material Science, ed. by S. Amelinckx et al. ( North-Holland, Amsterdam 1978 ) p. 655

    Google Scholar 

  105. A.B. Bok, J.B. LePoole, J. Roos, H. De Lang, H. Bethge, J. Heydenreich, N.E. Barnett: Mirror Electron Microscopy. In Adv. in Optical and Electron Microscopy, Vol. 4, ed. by R. Barer and V.E. Cosslett ( Academic, London 1971 ) p. 161

    Google Scholar 

  106. R.E. Ogilvie, M.A. Schippert, S.H. Moll, D.M. Koffman: Scanning electron mirror microscopy. SEM 1969 ( ITTRI, Chicago 1969 ) p. 425

    Google Scholar 

  107. G.V. Spivak, V.P. Ivannikov, A.E. Luk’yanov, E.I. Rau: Development of scanning mirror electron microscopy for quantitative evaluation of electric microfields. J. Micr. Spectr. Electron. 3, 89 (1978)

    Google Scholar 

  108. J. Witzani, E.M. Hörl: Scanning electron mirror microscopy. Scanning 4, 53 (1980)

    Google Scholar 

  109. ] A. Boyde, E. Maconnachie: Volume changes during preparation of mouse embryonic tissue for SEM. Scanning 2, 149 (1979)

    Google Scholar 

  110. A. Boyde, F. Franc, E. Maconnachie: Measurements of critical point shrinkage of glutaraldehyde fixed mouse liver. Scanning 4, 69 (1981)

    Google Scholar 

  111. G.J. Campbell, M.R. Roach: Dimensional changes associated with freeze-drying of the internal elastic lamina from cerebral arteries. Scanning 5, 137 (1983)

    Google Scholar 

  112. J.B. Pawley, J.T. Norton: A chamber attached to the SEM for fracturing and coating frozen biological samples. J. Microsc. 112, 169 (1977)

    Google Scholar 

  113. A. Maas: Direct observation and analysis of crystal growth processes in a SEM. In Electron Microscopy 1974, Vol. 1, ed. by J.V. Sanders and D.J. Goodchild ( Australian Acad. of Science, Canberra 1974 ) p. 162

    Google Scholar 

  114. U. Finnström: Dynamic studies of the reduction of iron oxides in the SEM. In Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders and D.J. Goodchild ( Australian Acad. of Science, Canberra 1974 ) p. 164

    Google Scholar 

  115. G.D. Danilatos, V.N.E. Robinson: Principles of SEM at high specimen chamber pressures. Scanning 2, 72 (1979)

    Google Scholar 

  116. G.D. Danilatos, R. Postle: The environmental SEM and its application. SEM 1982/I ( SEM Inc., AMF O’Hare, IL 1982 ) p. 1

    Google Scholar 

  117. G.D. Danilatos: Foundations of environmental SEM. Adv. Electr. Electron Physics 71 109 (1988)

    Google Scholar 

  118. A.N. Farley, J.S. Shah: High-pressure SEM of insulating materials: a new approach. J. Microsc. 164, 107 (1991)

    Google Scholar 

  119. G.D. Danilatos: Bibliography of environmental SEM. Microsc. Res. Techn. 25, 529 (1993)

    Google Scholar 

  120. G.D. Danilatos: Design and construction of an atmospheric or environmental SEM. Scanning 4, 9 (1981)

    Google Scholar 

  121. K. Jost, J. Kessler: Die Ortverteilung mittelschneller Elektronen bei Mehrfachstreuung. Z. Physik 176, 126 (1963)

    ADS  Google Scholar 

  122. A.N. Farley, J.S. Shah: Primary considerations for image enhancement in high-pressure SEM. J. Microsc. 158, 379 and 389 (1990)

    Google Scholar 

  123. G.D. Danilatos: Theory of the gaseous detector device in the environmental SEM Adv. Electr. Electron Physics 78 1 (1990)

    Google Scholar 

  124. C. Gilpin, D.C. Sigee: X-ray microanalysis of wet biological specimens in the ESEM. J. Microsc. 179, 22 (1995)

    Google Scholar 

  125. A. Rosencwaig, G. Busse: High resolution photoacoustic thermal-wave microscopy. Appl. Phys. Lett. 36, 257 (1980)

    Google Scholar 

  126. D.G. Davies: Scanning electron acoustic microscopy. SEM 1983/III ( SEM Inc., AMF O’Hare, IL 1983 ) p. 1163

    Google Scholar 

  127. L.J. Balk, N. Kultscher: Scanning electron acoustic microscopy. Beitr. elektr. mikr. Direktabb. Oberfl. 16, 107 (1983)

    Google Scholar 

  128. G.S. Cargill: Ultrasonic imaging in SEM. Nature 286, 691 (1980)

    ADS  Google Scholar 

  129. N. Kultscher, L.J. Balk: Signal generation and contrast mechanisms in scanning electron acoustic microscopy. SEM 1986/I ( SEM Inc., AMF O’Hare, IL 1986 ) p. 33

    Google Scholar 

  130. NI. Domnik, L.J. Balk: Quantitative scanning electron acoustic microscopy of silicon. Scanning Microscopy 7, 37 (1993)

    Google Scholar 

  131. H. Ermert, F.H. Dacol, R.L. Melcher, T. Baumann: Noncontact thermal-wave imaging of subsurface structure with infrared detection. Appl. Phys. Lett. 44, 1136 (1984)

    ADS  Google Scholar 

  132. J.F. Bresse: Scanning electron acoustic microscopy and SEM imaging of III-V compound devices. Scanning Microscopy 5, 961 (1991)

    Google Scholar 

  133. ] B.Y. Zhang, F.M. Jiang, Y. Yang, Q.R. Yin, S. Kojima: Electron acoustic imaging of BaTiO3 single crystals. J. Appl. Phys. 80, 1916 (1996)

    ADS  Google Scholar 

  134. J.F. Bresse: Electron acoustic signal of metallic layers over a semiconductor substrate. Scanning Microscopy 7, 523 (1993)

    Google Scholar 

  135. NI. Hatzakis: Lithographic processes in VLSI circuit fabrication. SEM 1979/I ( SEM Inc., AMF O’Hare, IL 1979 ) p. 275

    Google Scholar 

  136. D. Stephani: Monte Carlo calculation of backscattered electrons at registration marks. J. Vac. Sci. Techn. 16, 1739 (1979)

    ADS  Google Scholar 

  137. K. Murata: Monte Carlo simulation of electron scattering in resist film/substrate targets. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, IL 1982 ) p. 311

    Google Scholar 

  138. D.F. Kyser: Monte Carlo simulation of spatial resolution limits in electron beam lithography. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, IL 1982 ) p. 331

    Google Scholar 

  139. M. Kisza, Z. Maternia, Z. Radzimski: Backscattering of electrons from complex structures. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, IL 1982 ) p. 109

    Google Scholar 

  140. S.A. Rishton, D.P. Kern: Point exposure distribution measurements for proximity correction in electron beam lithography on a sub-100 nm scale. J. Vac. Sci. Techn. B 5, 135 (1987)

    Google Scholar 

  141. S.J. Wind, M.G. Rosenfield, G. Pepper, W.W. Molzen, P.D. Gerber: Proximity correction for electron beam lithography using a three-Gaussian model of the electron energy distribution. J. Vac. Sci. Techn. B 7, 1507 (1989)

    Google Scholar 

  142. G. Owen: Methods for proximity effect correction in electron lithography. J. Vac. Sci. Techn. B 8 1889 (1990)

    Google Scholar 

  143. T.H.P. Chang: Proximity effect in electron-beam lithography. J. Vac. Sci. Techn. 12, 1271 (1975)

    ADS  Google Scholar 

  144. M. Parikh: Corrections to proximity effects in electron beam lithography. J. Appl. Phys. 50, 4371 (1979)

    ADS  Google Scholar 

  145. G. Owen, P. Rissman: Proximity effect correction in electron beam lithography by equalization of background dose. J. Appl. Phys. 54, 3573 (1983)

    ADS  Google Scholar 

  146. M.G.R. Thomson: Incident dose modification for proximity effect correction. J. Vac. Sci. Techn. B 11, 2768 (1993)

    Google Scholar 

  147. H. Eisenmann, Th. Waas, H. Hartmann: PROXECCO — proximity effect correction by convolution. J. Vac. Sci. Techn. B 11, 2741 (1993)

    Google Scholar 

  148. T.R. Groves: Efficiency of electron-beam proximity effect correction. J. Vac. Sci. Techn. B 11, 2746 (1993)

    Google Scholar 

  149. B.D. Cook, S.Y. Lee: Fast proximity effect correction. An extension of PYRAMID for thicker resists. J. Vac. Sci. Techn. B 11, 2762 (1993)

    Google Scholar 

  150. resist films for microlithography. J.Vac. Sci. Techn. B 7, 1745 (1989)

    Google Scholar 

  151. J.B. Kruger, P. Rissman, M.S. Chang: Silicon transfer layer for multi-layer resist systems. J. Vac. Sci. Techn. 19, 1320 (1981)

    ADS  Google Scholar 

  152. M. Angelopoulos, J.M. Shaw, R.D. Kaplan, S. Perreault: Conducting polyanilines: Discharge layers for electron-beam lithography. J. Vac. Sci. Techn. B 7, 1519 (1989)

    Google Scholar 

  153. T.J. Stark, T.M. Mayer, D.P. Griffis, P.E. Russell: Electron beam induced metalization of palladium acetate. J. Vac. Sci. Techn. B 9, 3475 (1991)

    Google Scholar 

  154. K.L. Lee, M. Hatzakis: Direct electron-beam patterning for nanolithography. J. Vac. Sci. Techn. B 7 1941 (1989)

    Google Scholar 

  155. M. Yasuda, H. Kawata, K. Murata, K. Hashimoto, Y. Hirai, N. Nomura: Resist heating effect in electron beam lithography. J. Vac. Sci. Techn. B 12, 1362 (1994)

    Google Scholar 

  156. L. Reimer, D. Stelter: Monte Carlo calculations of electron emission at surface edges. Scanning Microscopy 1, 951 (1987)

    Google Scholar 

  157. S. Hasegawa, T. Hidaka: Three-dimensional Monte Carlo calculation by a supercomputer. J. Vac. Sci. Techn. B 5, 142 (1987)

    Google Scholar 

  158. D.C. Joy: Image simulation for secondary electron micrographs in the SEM. Scanning Microscopy 2, 57 (1988)

    Google Scholar 

  159. T.E. Allen, R.R. Kunz, T.M. Mayer: Monte Carlo calculation of low-energy electron emission from surfaces. J. Vac. Sci. Techn. B 6, 2057 (1988)

    Google Scholar 

  160. S. Takeuchi, H. Nakamura, Y. Watakabe: A study of electron beam metrol- ogy using computer simulation. J. Vac. Sci. Techn. B 7, 73 (1989)

    Google Scholar 

  161. X. Wang, D.C. Joy: A new high-speed simulation method for electron-beam critical dimension metrology profile modeling. J. Vac. Sci. Techn. B 9, 3573 (1991)

    Google Scholar 

  162. K.S. Maher: Techniques for LVSEM linewidth measurements. Scanning Microscopy 7, 65 (1993)

    Google Scholar 

  163. M.T. Postek: Low accelerating voltage SEM imaging and metrology using backscattered electrons. Rev. Sci. Instr. 61, 3750 (1990)

    ADS  Google Scholar 

  164. M.G. Rosenfield: Measurement techniques for submicron resist images. J. Vac. Sci. Techn. B 6, 1944 (1988)

    Google Scholar 

  165. M.G. Rosenfield: Overlay measurement using the LVSEM. Microelectr. Eng. 17, 439 (1992)

    Google Scholar 

  166. M.T. Postek: SEM-based metrological SEM magnification standard. Scanning Microscopy 3, 1087 (1989)

    Google Scholar 

  167. L. Grella, E. Di Fabricio, M. Goutili, M. Baciocchi, L. Mastrogiacomo, R. Maggiora, L. Capodicci: Secondary electron line scans over high resolution resist images: theoretical and experimental investigation of induced local electric field effects. J. Vac. Sci. Techn. B 12, 3555 (1994)

    Google Scholar 

  168. W. Liu, J. Ingino, R.F. Pease: Resist charging in electron beam lithography. J. Vac. Sci. Techn. B 13, 1979 (1995)

    ADS  Google Scholar 

  169. J. Kato, H. Morita, K. Saito, N. Shimazu: Beam position stabilization by suppression of electrons reentering the electron-beam column. J. Vac. Sci. Techn. B 13, 2450 (1995)

    Google Scholar 

  170. F. Mizuno, S. Yamada: Effect of electron-beam parameters on critical- dimension measurements. J. Vac. Sci. Techn. B 13, 2682 (1995)

    Google Scholar 

  171. E. Di Fabricio, L. Grella, M. Gentili, M. Baciocchi, L. Mastrogiacomo, R. Maggiora: Nanometer metrology by means of BSE. J. Vac. Sci. Techn. B 13, 321 (1995)

    Google Scholar 

  172. G. Matsuoka, M. Ichihasi, H. Marukoshi, K. Yamamoto: Automatic electron beam metrology system for development of very large-scale integrated devices. J. Vac. Sci. Techn. B 5, 79 (1987)

    Google Scholar 

  173. J.E. Griffith. D.A, Grigg, M. J. Vasile, P.E. Russell, E.A. Fitzgerald: Characterization of scanning probe microscope tips for linewidth measurement. J. Vac. Sci. Techn. B 9, 3586 (1991)

    Google Scholar 

  174. K.L. Lee, D.W. Abraham, F. Secord, L. Landstein: Submicron Si trench profiling with an electron-beam fabricated atomic force microscope tip. J. Vac. Sci. Techn. B 9, 3562 (1991)

    Google Scholar 

  175. R.J. Behm, N. Garcia, H. Rohrer (eds.): Scanning Tunneling Microscopy and Related Methods, NATO ASI Series E: Applied Sciences, Vol. 184 ( Kluwer, Dordrecht 1990 )

    Google Scholar 

  176. H.J. Güntherodt, R. Wiesendanger (eds.): Scanning Tunneling Electron Microscopy I, 2nd edn., Springer Ser. in Surface Sciencs, Vol. 20 (Springer, Berlin, Heidelberg 1994); R. Wiesendanger, H.J. Güntherodt (Eds.): Scanning Tunneling Microscopy II and III, 2nd edn., Springer Surf. Sci., Vols. 28 and 29 (Springer, Berlin, Heidelberg 1995 and 1996 )

    Google Scholar 

  177. D.A. Bonnell (ed.): Scanning Tunneling Microscopy and Spectroscopy ( VCH Publishers, New York 1993 )

    Google Scholar 

  178. R. Wiesendanger: Scanning Probe Microscopy and Spectroscopy (Cambridge Univ. Press, Cambridge 1994 )

    Google Scholar 

  179. M. Anders, M. Mück, C. Heiden: SEM/STM combination for STM tip guidance. Ultramicroscopy 25, 123 (1988)

    Google Scholar 

  180. L. Vazquez, A. Bartolomé, R. Garcia, A. Buendia, A.M. Baro: Combination of a STM with a SEM. Rev. Sci. Instr. 59, 1286 (1988)

    ADS  Google Scholar 

  181. H. Fuchs, R. Laschinski: Surface investigations with a combined scanning electron — scanning tunneling microscope. Scanning 12, 126 (1990)

    Google Scholar 

  182. A.O. Golubok, V.A. Timofeev: STM combined with SEM without SEM capability limitations. Ultramicroscopy 42-44, 1558 (1992)

    Google Scholar 

  183. M. Troyon, H.N. Lei, A. Bourhettar: Integration of an STM in an SEM. Ultramicroscopy 42-44, 1564 (1992)

    Google Scholar 

  184. K. Nakamoto, K. Uozumi: A compact STM compatible with conventional SEM. Ultramicroscopy 42-44, 1569 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1998). Special Techniques in SEM. In: Scanning Electron Microscopy. Springer Series in Optical Sciences, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38967-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38967-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08372-3

  • Online ISBN: 978-3-540-38967-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics