Skip to main content

Electron Detectors and Spectrometers

  • Chapter
Scanning Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 45))

Abstract

The most effective detection systems for secondary electrons (SE), which has a low noise level and a large bandwidth, is the Everhart-Thornley detector. Electrons are collected by a positively biased grid in front of a scintillator biased at +10 kV. The light emission is recorded by a photomultiplier tube. Scintillation detectors can also be used for backscattered electrons (BSE) when the solid angle of collection is increased. Other alternatives for BSE are semiconductor detectors, microchannel plates, or the conversion of BSE to SE. The recording of SE in the in-lens mode or in LVSEM needs special detector designs for rotationally symmetric collection fields. For the separation of different types of contrast and for more quantitative signals, improvements can be obtained by employing multiple detector systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.W. Oatley: Detectors for the SEM. J. Phys. E 14, 971 (1981)

    ADS  Google Scholar 

  2. M. Maussion: High resolution SEM with absorbed current at low intensity primary beams. J. Phys. E 18, 11 (1985)

    ADS  Google Scholar 

  3. H. Vitturro, C. Peez, R.D. Bonetto, A.G. Alvarez: A simple BSE and specimen current detection device for the SEM. Scanning 15, 232 (1993)

    Google Scholar 

  4. M. Hatzakis: A new method of forming scintillators for electron collectors. Rev. Sci. Instr. 41, 128 (1970)

    ADS  Google Scholar 

  5. M.E. Taylor: An improved light pipe for the SEM. Rev. Sci. Instr. 43, 1846 (1972)

    Google Scholar 

  6. D.C. Marshall, J. Stephen: Secondary electron detector with an extended life for use in a SEM. J. Phys. E 5, 1046 (1972)

    ADS  Google Scholar 

  7. R.J. Woolf, D.C. Joy, D.W. Tansley: A transmission stage for the SEM. J. Phys. E 5, 230 (1972)

    ADS  Google Scholar 

  8. J.B. Pawley: Performance of SEM scintillation materials. SEM 1974 ( IT-TRI, Chicago 1974 ) p. 27

    Google Scholar 

  9. N.R. Comins, M.M.E. Hengstberger, J.T. Thirlwall: Preparation and evaluation of P-47 scintillators for a SEM. J. Phys E 11, 1041 (1978)

    ADS  Google Scholar 

  10. G. Mustoe: Preparation of P-47 crystalline phosphor scintillator discs. Scanning 2, 41 (1979)

    Google Scholar 

  11. W. Baumann, A. Niemietz, L. Reimer, B. Volbert: Preparation of P-47 scintillators for STEM. J. Microsc. 122, 181 (1981)

    Google Scholar 

  12. N.R. Comins, J.T. Thirlwall; Quantitative studies and theoretical analysis of the performance of the scintillation electron-detector. J. Microsc. 124, 119 (1981)

    Google Scholar 

  13. R. Autrata, P. Schauer, J. Kvapil, J. Kvapil: A single crystal of YAG — new fast scintiilator in SEM. J. Phys. E 11, 707 (1978)

    ADS  Google Scholar 

  14. R. Autrata, P. Schauer, J. Kvapil, J. Kvapil: A single crystal of YA1O3:Ce3+ as a fast scintillator in SEM. Scanning 5, 91 (1983)

    Google Scholar 

  15. R. Autrata, P. Schauer, J. Kvapil, J. Kvapil: Single-crystal aluminates — a new generation of scintillators for SEM and transparent screens in electron optical devices. SEM 1983/II ( SEM Inc., AMF O’Hare, IL 1983 ) p. 489

    Google Scholar 

  16. P. Schauer, R. Autrata: Time response of single crystal scintillation detectors for SEM/STEM. In Electron Microscopy 1994, Vol. 1, ed. by B. Jouffrey and C. Colliex ( Les Editions de Physique, Les Ulis, France 1994 ), p. 227

    Google Scholar 

  17. T.E. Everhart, R.F.M. Thornley: Wideband detector for micro-microampere low-energy electron currents: J. Sci. Instr. 37, 246 (1960)

    ADS  Google Scholar 

  18. R. Autrata, R. Hermann, M. Müller: An efficient single crystal BSE de- tector in SEM. Scanning 14, 127 (1992)

    Google Scholar 

  19. P. Schauer, R. Autrata: Light transport in single-crystal scintillation detectors in SEM. Scanning 14, 325 (1992)

    Google Scholar 

  20. S. Yamada, T. Ito, K. Gouhara, Y. Uchikawa: Electron count imaging in SEM. Scanning 13, 165 (1991)

    Google Scholar 

  21. Y. Uchikawa, K. Gouhara, S. Yamada, T. Ito, T. Kodama, P. Sardeshmukh: Comparative study of electron counting and conventional analogue detection of SE electrons in SEM. J. Electr. Microsc. 41, 253 (1992)

    Google Scholar 

  22. E. Breitenberger: Scintillation spectrometer statistics. Progr. Nucl. Phys. 4, 56 (1955)

    Google Scholar 

  23. B. Saleh: Photoelectron Statistics, Springer Ser. Opt. Sci., Vol. 6 ( Springer, Berlin, Heidelberg 1978 )

    Google Scholar 

  24. P.R. Evrard, C. Gazier: Propriétés statistiques de certains photo-multiplicateurs. Journal de Physique 26, 37 A (1965)

    Google Scholar 

  25. A. Williams, D. Smith: Afterpulses in liquid scintillation counters. Nucl. Instr. Meth. 112, 131 (1973)

    Google Scholar 

  26. K.A. Hughes, D.V. Sulway, R.C. Wayte, P.R. Thornton: Application of secondary-electron channel multipliers to SEM. J. Appl. Phys. 38, 4922 (1967)

    ADS  Google Scholar 

  27. H. Hantsche, G. Schreiber: Zur Verwendung eines Channeltrons als Elektronendetektor im Raster-Elektronenmikroskop. Beitr. elektr. mikr. Direktabb. Oberfl. 3, 167 (1970)

    Google Scholar 

  28. P.E. Russel, J.F. Mancuso: Microchannel plate detector for LVSEM. J. Microsc. 140, 323 (1985)

    Google Scholar 

  29. M.T. Postek, W.J. Keery, N.V. Frederick: Low-profile, high-efficiency microchannel-plate detector system for SEM applications. Rev. Sci. Instr. 61, 1648 (1990)

    ADS  Google Scholar 

  30. J.B. Elsbrock, L.J. Balk: Quantitative evaluation of micromagnetic fields by means of a SEM. SEM 1984/I ( SEM Inc., AMF O’Hare, IL 1984 ), p. 131

    Google Scholar 

  31. E.D. Wolf, I.E. Everhart: Annular diode detector for high angular reso- lution pseudo-Kikuchi patterns. SEM 1969 ( ITTRI, Chicago 1969 ) p. 41

    Google Scholar 

  32. E. Miyazaki, H. Maeda, K. Miyaji: The Evoscope — a fixed pattern gen- erator using a Au-Si diode. Adv. Electr. Electron Phys. A 22, 331 (1966)

    Google Scholar 

  33. W. Czaja: Response of Si and GaP p-n junctions to a 5 to 40 keV electron beam. J. Appl. Phys. 37, 4236 (1966)

    ADS  Google Scholar 

  34. O.C. Wells: Effect of collector position on type-2 magnetic contrast in the SEM. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 293

    Google Scholar 

  35. J. Stephen, B.J. Smith, D.C. Marshall, E.M. Wittam: Application of a semiconductor backscattered electron detector in a SEM. J. Phys. E 8, 607 (1975)

    ADS  Google Scholar 

  36. M. Kikuchi, S. Takashima: Multi-purpose backscattered electron detector In Electron Microscopy 1978, Vol.1, ed. by J.M. Sturgess (Microsc. Soc. of Canada, Toronto 1978 ) p. 82

    Google Scholar 

  37. D.A. Gedcke, J.B. Ayers, P.B. DeNee: A solid state backscattered electron detector capable of operating at TV scan rates. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 581

    Google Scholar 

  38. A.V. Crewe, M. Isaacson, D. Johnson: Secondary electron detection in a field emission scanning microscope. Rev. Sci. Instr. 41, 20 (1970)

    ADS  Google Scholar 

  39. H. Drescher, L. Reimer, H. Seidel: Rückstreukoeffizient and Sekundärelektronen-Ausbeute von 10–100 keV Elektronen and Beziehungen zur Raster-Elektronenmikroskopie. Z. angew. Phys. 29, 331 (1970)

    Google Scholar 

  40. C.W. Oatley: Electron currents in the specimen chamber of a SEM. J. Phys. E 16, 308 (1983)

    ADS  Google Scholar 

  41. K.R. Peters: Generation, collection and properties of an SE-I enriched signal suitable for high resolution SEM of bulk specimens. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, IL 1984 ) p. 363

    Google Scholar 

  42. T. Nagantani, A. Okura: Enhanced secondary electron detection at small working distances in the field emission SEM. SEM 1977/I ( SEM Inc., AMF O’Hare, IL 1977 ) p. 695

    Google Scholar 

  43. H. Koike, K. Ueno, M. Suzuki: Scanning device combined with conventional electron microscope. Proc. EMSA 1971 (Claytor’s Publ. Div., Baton Rouge ) p. 28

    Google Scholar 

  44. J.R. Banbury, W.C. Nixon: A high-contrast directional detector for the SEM. J. Phys. E 2, 1055 (1969)

    ADS  Google Scholar 

  45. J. Zach, H. Rose: Efficient detection of SE in LVSEM. Scanning 8, 285 (1986)

    Google Scholar 

  46. R. Schmid, M. Brunner: Design and application of a quadrupole detector for LVSEM. Scanning 8, 294 (1986)

    Google Scholar 

  47. M. Brunner, R. Schmid: Characteristics of an electric/magnetic quadrupole detector for LVSEM. Scanning Microscopy 1, 1501 (1987)

    Google Scholar 

  48. J. Zach, H. Rose: High-resolution low-voltage electron microprobe with large SE detection efficiency. Inst. of Phys. Conf. Ser. No. 93 ( IoP, Bristol 1988 ) p. 81

    Google Scholar 

  49. J. Zach: Design of a high-resolution low-voltage SEM. Optik 83, 30 (1989)

    Google Scholar 

  50. R. Autrata, P. Schauer: Collection of low energy signal electrons in the rotationally symmetric electrostatic field of a detector. Beitr. elektr. mikr. Direktabb. Oberfl. 26, 19 (1993)

    Google Scholar 

  51. V. Kolarik, J. Mejzlik: A design of a new axially symmetric SE detector for the TEM. Meas. Sci. Techn. 1, 391 (1990)

    ADS  Google Scholar 

  52. S.H. Moll, F. Healey, B. Sullivan, W. Johnson: A high efficiency, nondirectional backscattered electron detection mode for SEM. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 303

    Google Scholar 

  53. L. Reimer, B. Volbert: Detector system for backscattered electrons by conversion to secondary electrons. Scanning 2, 238 (1979)

    Google Scholar 

  54. A. Boyde, M.J. Cowham: An alternative method for obtaining converted BSE images and other uses for specimen biasing in biological SEM. SEM 1980/I ( SEM Inc., AMF O’Hare, IL 1980 ) p. 227

    Google Scholar 

  55. B. Volbert, L. Reimer: Advantages of two opposite Everhart—Thornley detectors in SEM. SEM 1980/IV ( SEM Inc., AMF O’Hare, IL 1980 ) p. 1

    Google Scholar 

  56. A.R. Walker, G.R. Booker: A simple energy-filtering backscattered electron detector. In Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 119

    Google Scholar 

  57. O.C. Wells: New contrast mechanism for SEM. Appl. Phys. Lett. 16, 151 (1970)

    ADS  Google Scholar 

  58. O.C. Wells, C.G. Bremer: Collector turret for SEM. Rev. Sci. Instr. 41, 1034 (1970)

    ADS  Google Scholar 

  59. R. Blaschke, K. Schur: Der Informationsgehalt des Rückstreubildes im Raster-Elektronenmikroskop. Beitr. elektr. mikr. Direktabb. Oberfl. 7, 33 (1974)

    Google Scholar 

  60. K. Schur, R. Blaschke, G. Pfefferkorn: Improved conditions for backscattered electron SEM micrographs on polished sections using a modified scintillator detector. SEM 1974 ( ITTRI, Chicago 1974 ) p. 1003

    Google Scholar 

  61. V.N.E. Robinson: The construction and uses of an efficient backscattered electron detector for SEM. J. Phys. E 7, 650 (1974)

    ADS  Google Scholar 

  62. V.N.E. Robinson: Imaging with backscattered electrons in a SEM. Scanning 3, 15 (1980)

    Google Scholar 

  63. R. Autrata: BSE imaging using single crystal scintillation detectors. Scanning Microscopy 3, 739 (1989)

    Google Scholar 

  64. R. Autrata, J. Hejna: Detectors for LVSEM. Scanning 13, 275 (1991)

    Google Scholar 

  65. R. Autrata: New configurations of single-crystal scintillation detectors in SEM. In Electron Microscopy 1990, Vol. 1, ( San Francisco Press, San Francisco 1990 ) p. 376

    Google Scholar 

  66. V.N.E. Robinson: BSE imaging at low accelerating voltages. Hitachi Instr. News 19, 32 (1990)

    Google Scholar 

  67. L. Reimer: Electron signal and detector strategy. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, IL 1982 ) p. 299

    Google Scholar 

  68. L. Reimer: SEM of surfaces. In Electron Microscopy 1982, Vol. 1 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982 ) p. 79

    Google Scholar 

  69. L. Reimer, M. Riepenhausen: Detector strategy for secondary and backscattered electrons using multiple detector systems. Scanning 7, 221 (1985)

    Google Scholar 

  70. S. Kimoto, H. Hashimoto: Stereoscopic observation in SEM using multiple detectors. In The Electron Microprobe, ed. by T.D. McKinley et al (Wiley, New York 1966 ), p. 480

    Google Scholar 

  71. J. Hejna: Detection of topographic contrast in the SEM at low and medium resolution by different detectors and detector systems. Scanning Microscopy 8, 143 (1994)

    Google Scholar 

  72. J. Hejna: A ring scintillation detector for detection of BSE in the SEM. Scanning Microscopy 1, 983 (1987)

    Google Scholar 

  73. J. Hejna: Optimization of the ring scintillation detector for BSE in the SEM. In EUREM 88 (loP, Bristol 1988 ) p. 119

    Google Scholar 

  74. J. Lebiedzik, E.W. White: Multiple detector method for quantitative determination of microtopography in the SEM. SEM 1975 ( ITTRI, Chicago 1975 ) p. 181

    Google Scholar 

  75. J. Lebiedzik, J. Lebiedzik, R. Edwards, B. Phillips: Use of microtopography capability in the SEM for analysing fracture surfaces. SEM 1979/I1 ( SEM Inc., AMF O’Hare, IL 1979 ) p. 61

    Google Scholar 

  76. M. Lange, L. Reimer, C. Tollkamp: Testing of detector strategies in SEM by isodensities. J. Microsc. 134, 1 (1984)

    Google Scholar 

  77. J. Hejna, L. Reimer: Backscattered electron multidetector systems for improved quantitative topographic contrast. Scanning 9, 162 (1987)

    Google Scholar 

  78. W. Kuypers, S. Lichtenegger: Universal detector system for BSE, transmitted electrons and cathodoluminescence. In Electron Microscopy 1980, Vol.1, ed. by P. Brederoo and G. Boom (7th European Congr. on Electron Microscopy Foundation, Leiden 1980 ) p. 522

    Google Scholar 

  79. p.705 [5.80] T.E. Everhart, O.C. Wells, C.W. Oatley: Factors affecting contrast and resolution in the SEM. J. Electron. and Contr. 7, 97 (1959)

    Google Scholar 

  80. W. Baumann, L. Reimer: Comparison of the noise of different electron detection systems using a scintillator—photomultiplier combination. Scanning 4, 141 (1981)

    Google Scholar 

  81. R.C. Jones: Quantum efficiency of detectors for visible and infrared radiation. Adv. Electr. Electron Phys. 11, 87 (1959)

    Google Scholar 

  82. F.J. Maher, C.J. Rossouw: Design and performance of an amplifier for EBIC imaging in a SEM. J. Phys. E 16, 1238 (1983)

    ADS  Google Scholar 

  83. W. Steckelmacher: Energy analysers for charged particle beams. J. Phys. E 6, 1061 (1973)

    ADS  Google Scholar 

  84. H.T. Pearce-Percy: The design of spectrometers for energy loss spectroscopy. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 41

    Google Scholar 

  85. L. Reimer, K. Brockmann, U. Rhein: Energy losses of 20–40 keV electrons in 150–650 µg/cm2 metal films. J. Phys. D 11, 2151 (1978)

    ADS  Google Scholar 

  86. A. Rusterholz: Elektronenoptik I: Grundlagen der theoretischen Elektronenoptik. ( Birkhäuser, Basel 1950 )

    Google Scholar 

  87. E. Menzel, E. Kubalek: Secondary electron detection systems for quantitative voltage measurements. Scanning 5, 151 (1983)

    Google Scholar 

  88. O.C. Wells, C.G. Bremer: Improved energy analyser for the SEM. J. Phys. E 2, 1120 (1969)

    ADS  Google Scholar 

  89. L.J. Balk, H.P. Feuerbaum, E. Kubalek, E. Menzel: Quantitative voltage contrast at high frequencies in the SEM. SEM 1976/I (fl“l’RI, Chicago 1976 ) p. 615

    Google Scholar 

  90. Y. Goto, A. Ito, Y. Furukawa, T. Inagaki: Hemispherical retarding type energy analyser for IC testing by electron beam. J. Vac. Sci. Techn. 19, 1030 (1981)

    ADS  Google Scholar 

  91. K. Nakamae, H. Fujioka, K. Ura, T. Takagi, S. Takashima: A hemispherical retarding-field analyser with a microchannel plate detector and high extraction field for voltage measurement in the SEM. J. Phys. E 19, 847 (1986)

    ADS  Google Scholar 

  92. H.P. Feuerbaum: VLSI testing using the electron probe. SEM 1979/I ( SEM Inc., AMF O’Hare, IL 1979 ) p. 285

    Google Scholar 

  93. H. Todokara, S. Yoneda, K. Yamaguchi, S. Fukuhara, T. Komoda: Stroboscopic testing of LSIs with LVSEM. J. Microsc. 140, 313 (1985)

    Google Scholar 

  94. J. Frosien, E. Plies, K. Anger: Compound magnetic and electrostatic lenses for low-voltage applications. J. Vac. Sci. Techn. B 7, 1874 (1989)

    Google Scholar 

  95. A.R. Dinnis, A. Khursheed: A voltage-contrast analyzer using radial mag- netic field exctraction. J. Vac. Sci. Techn. B 6, 2003 (1988)

    Google Scholar 

  96. T. Aton, S.C.J. Garth, J.N. Sackett, D.F. Spicer: Characteristics of a virtual immersion lens spectrometer for electron beam testing. J. Vac. Sci. Techn. B 6, 1953 (1988)

    Google Scholar 

  97. P. Kruit, F.H. Read: Magnetic field paralleliser for 27 electronspectrometer and electron-image magnifier. J. Phys. E 16, 313 (1983)

    ADS  Google Scholar 

  98. W.J. Tee, A. Gopinath: A voltage measurement scheme for the SEM using a hemispherical retarding analyser. SEM 1976/I ( IT rRI, Chicago 1976 ) p. 595

    Google Scholar 

  99. W. Hylla, H. Niedrig, T. Wittich: The use of silicon avalanche diodes as energy sensitive electron detectors. In Electron Microscopy 1986, Vol. 1, ed. by T. Imura et al. ( Jpn. Soc. of Electron Microscopy, Tokyo 1986 ) p. 443

    Google Scholar 

  100. P. Gerard, J.L. Balladore, H. Pinna, J.P. Martinez, A. Ouabbou, G. Ball: Method for the analysis of backscattered electron energy. In Electron Microscopy 1992, Vol. 1, ed. by A. Rios et al. ( Seer. Publ. Universidad de Granada, Spain 1992 ) p. 99

    Google Scholar 

  101. L. Reimer, R. Böngeler, M. Kässens, F.F. Liebscher, R. Senkel: Calculation of energy spectra from layered structures for backscattered electron spectrometry and relations to Rutherford backscattering spectrometry by ions. Scanning 13, 381 (1991)

    Google Scholar 

  102. O.C. Wells: Low-loss image for surface SEM. Appl. Phys. Lett. 19, 232 (1971)

    ADS  Google Scholar 

  103. P. Morin, M. Pitaval, D. Besnard, G. Fontaine: Electron-channelling imaging in SEM. Phil. Mag. A 40, 511 (1979)

    ADS  Google Scholar 

  104. O.C. Wells, A.N. Broers, C.G. Bremer: Method for examining solid specimens with improved resolution in the SEM. Appl. Phys. Lett. 23, 353 (1973)

    ADS  Google Scholar 

  105. N.N. Dremova, E.I. Rau, V.N.E. Robinson: Energy analysers for SEM. Instr. Exp. Techn. 38, 95 (1995)

    Google Scholar 

  106. E.I. Rau, V.N.E. Robinson: An annular toroidal BSE energy analyser for use in in SEM. Scanning 18, 556 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1998). Electron Detectors and Spectrometers. In: Scanning Electron Microscopy. Springer Series in Optical Sciences, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38967-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38967-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08372-3

  • Online ISBN: 978-3-540-38967-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics