Skip to main content

Electron Scattering and Diffusion

  • Chapter
Scanning Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 45))

Abstract

Elastic and inelastic scattering processes result in zig-zag trajectories of electrons in a solid until the electrons come to rest by gradual deceleration or leave the specimen as backscattered electrons. Elastic large-angle scattering differs considerably from that characterized by the widely used Rutherford cross-sections and Mott cross-sections have to be used for more accurate calculations. The ionization cross-section of inner shells is important for calculating the number of characteristic x-ray quanta generated. The influence of inelastic scattering on deceleration can be treated by Bethe’s continuousslowing-down approximation without knowing the inelastic scattering processes in detail. The angular, spatial and energy distributions after passage through thin films or surface layers can be treated by multiple-scattering theories. The total electron diffusion is a very complex process. The properties of practical interest are the dependence of transmission on specimen thickness, the electron range and also the depth and spatial distributions of dissipated energy since this can generate electron-hole pairs in semiconductors, phonons or heat and can cause radiation damage and charging by the electron beam. The so-called diffusion models are very crude and detailed calculations using the transport equation or the Monte Carlo method can only be made numerically on a computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Reimer: Transmission Electron Microscopy, Physics of Image Formation and Microanalysis, 4th ed., Springer Ser. Opt. Sci., Vol. 36 ( Springer, Berlin, Heidelberg 1997 )

    Google Scholar 

  2. R.D. Birkhoff: The Passage of Fast Electrons through Matter. Encyclope dia of Physics, Vol.34, ed. by S. Flügge ( Springer, Berlin 1958 ) p. 53

    Google Scholar 

  3. J.M. Lévy-Leblond: Nonrelativistic particles and wave equations. Comm. Math. Phys. 6, 286 (1967)

    MathSciNet  MATH  ADS  Google Scholar 

  4. W.Greiner: Theoretische Physik, Bd.4: Quantenmechanik ( Harry Deutsch, Thun 1979 ) p. 300

    Google Scholar 

  5. H.S.W. Massey, E.H.S. Burhop, H.B. Gilbody: Electronic and Ionic Impact Phenomena. Vol.I. Collison of Electrons with Atoms ( Clarendon, Oxford 1965 )

    Google Scholar 

  6. H.L. Cox, R.A. Bonham: Elastic electron scattering amplitudes for neutral atoms calculated using the partial wave method at 10, 40, 70 and 100 kV for Z = 1 to Z = 54. J. Chem. Phys. 47, 2599 (1967)

    ADS  Google Scholar 

  7. F. Lenz: Zur Streuung mittelschneller Elektronen in kleinste Winkel. Z. Naturforschg. 9a, 185 (1954)

    MATH  ADS  Google Scholar 

  8. H. Raith: Komplexe Streuamplituden für die elastische Elektronenstreuung an Festkörperatomen. Acta Cryst. A 24, 85 (1968)

    Google Scholar 

  9. L. Reimer, K.H. Sommer: Messungen and Berechnungen zum elektronenmikroskopischen Streukontrast für 17 bis 1200 keV-Elektronen. Z. Naturforschg. 23a 1569 (1968)

    Google Scholar 

  10. F. Salvat, R. Mayol: Elastic scattering of electrons and positrons by atoms. Schrödinger and Dirac partial wave analysis. Comp. Phys. Comm. 74, 358 (1993)

    ADS  Google Scholar 

  11. N.F. Mott, H.S.W. Massey: The Theory of Atomic Collisions, 3rd edn. ( Oxford Univ. Press, London 1965 )

    Google Scholar 

  12. D.W. Walker: Relativistic effects in low energy electron scattering from atoms. Adv. Physics 20, 257 (1971)

    ADS  Google Scholar 

  13. J. Kessler: Polarized Electrons, 2nd edn., Springer Ser. Atoms Plasmas, Vol. 1 ( Springer, Berlin, Heidelberg 1985 )

    Google Scholar 

  14. W. Bühring: Computational improvement in phase shift calculations of elastic electron scattering. Z. Physik 187, 180 (1965)

    MathSciNet  ADS  Google Scholar 

  15. A.C. Yates: Spin polarization of low-energy electrons scattered elastically from atoms and molecules. Phys. Rev. 176, 173 (1968)

    ADS  Google Scholar 

  16. L. Reimer, B. Lödding: Calculation and tabulation of Mott cross-sections for large-angle electron scattering. Scanning 6, 128 (1984)

    Google Scholar 

  17. A. Jablonski, G. Gergely: Mott factors for P, V, Fe, Ga, As, Pd, In, Ta, and W for 500–3000 eV electrons. Scanning 11, 29 (1989)

    Google Scholar 

  18. Z. Czyzewski, D.O. MacCallum, A. Romig, D.C. Joy: Calculations of Mott scattering cross section. J. Appl. Phys. 68, 3066 (1990)

    ADS  Google Scholar 

  19. R. Browning: Universal elastic scattering cross sections for electrons in the range 1–100 keV. Appl. Phys. Lett. 58, 2845 (1991)

    ADS  Google Scholar 

  20. R. Browning: T. Eimori, E.P. T.aut, B. Chui, R.F.W. Pease: An elastic cross sections model for use with Monte Carlo simulations of low energy scattering from high atomic number targets. J. Vac. Sci. Techn. B 9, 3578 (1991)

    Google Scholar 

  21. D. Drouin, R. Gauvin, D.C. Joy: Computation of polar angle of collisions from partial elastic Mott cross-sections. Scanning 16, 67 (1994)

    Google Scholar 

  22. G. Gergely: Elastic peak electron spectroscopy. Scanning 8, 203 (1986)

    Google Scholar 

  23. H. Raether: Excitations of Plasmons and Interband Transitions by Electrons. Springer Tracts Mod. Phys., Vol. 88 ( Springer, Berlin, Heidelberg 1980 )

    Google Scholar 

  24. J. Daniels, C. von Festenberg, H. Raether, K. Zeppenfeld: Optical constants of solids by electron spectroscopy. Springer Tracts Mod. Phys., Vol. 54 (Springer, Berlin, Heidelberg 1970 ) p. 77

    Google Scholar 

  25. R.F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn. ( Plenum, New York, London 1996 )

    Google Scholar 

  26. F. Hofer: Inner-shell ionization. In Energy-Filtering Transmission Electron Microscopy, ed. by L. Reimer, Springer Ser. Opt. Sci., Vol. 71 ( Springer, Berlin, Heidelberg 1995 ) p. 225

    Google Scholar 

  27. C.C. Ahn, O.L. Krivanek: EELS Atlas ( Gatan Inc., Warrendale, PA 1983 )

    Google Scholar 

  28. L. Reimer, U. Zepke, J. 1M-1oesch, St. Schulze-Hillert, M. Ross-Messemer, W. Probst, E. Weimer: EELSpectroscopy. A Reference Handbook of Standard Data for Identification and Interpretation of Electron Energy Loss Spectra and for Generation of Electron Spectroscopic Images, Carl Zeiss, Electron Optics Division ( Oberkochen, Germany 1992 )

    Google Scholar 

  29. M. Creuzburg, H. Raether: Uber die charakteristischen Energieverluste bei Elektronenstreuung an Si-Spaltflächen. Z. Physik 171, 436 (1963)

    ADS  Google Scholar 

  30. J. Schilling: Energieverlustmessungen von schnellen Elektronen an Ober- flächen von Ga, In, Al und Si. Z. Physik B 25, 61 (1976)

    ADS  Google Scholar 

  31. H. Froitzheim: Electron energy loss spectroscopy, In Electron Spectroscopy of Surface Analysis, ed. by H. Ibach, Topics Current Phys., Vol. 4 ( Springer, Berlin, Heidelberg 1977 ) p. 205

    Google Scholar 

  32. C. Moller: Zur Theorie des Durchgangs schneller Elektronen durch Materie. Ann.Physik 14, 531 (1932)

    MATH  ADS  Google Scholar 

  33. M. Gryzinski: Classical theory of atomic collisions. I. Theory of inelastic collisions. Phys.Rev. A 138, 336 (1965)

    MathSciNet  Google Scholar 

  34. C.R. Worthington, S.G. Tomlin: The intensity of emission of characteristic x-radiation. Proc. Phys. Soc. A 69, 401 (1956)

    ADS  Google Scholar 

  35. C.J. Powell: Cross-sections for ionization of inner-shell electrons by electrons. Rev. Mod. Phys. 48, 33 (1976)

    ADS  Google Scholar 

  36. C.J. Powell: Inelastic scattering of electrons in solids. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, IL 1982 ) p. 19

    Google Scholar 

  37. J. Philibert, R. ‘fixier: Some problems with quantitative electron probemicroanalysis. in Quantitative Electron Probe Microanalysis, ed. by K.F.J. Heinrich, Nat. Bur. Stand. Spec.Publ. 298 (Washington 1968 ) p. 13

    Google Scholar 

  38. R.F. Egerton: Measurement of inelastic/elastic scattering ratio for fast electrons and its use in the study of radiation damage. Phys. Stat. Solidi A 37, 663 (1976)

    ADS  Google Scholar 

  39. L. Reimer, M. Ross-Messemer: Contrast in the electron spectroscopic imaging mode of a TEM. II. Z-ratio, structure-sensitive and phase contrast. J. Microsc. 159, 143 (1990)

    Google Scholar 

  40. M. Kotera, R. Ijichi, T. Fujiwara, H. Suga, D.B. Wittry: A simulation of electron scattering in metals. Jpn. J. Appl. Phys. 29, 2277 (1990)

    ADS  Google Scholar 

  41. S. Goudsmit, J.L. Saunderson: Multiple scattering of electrons. Phys. Rev. 57, 24 (1940); 58, 36 (1940)

    ADS  Google Scholar 

  42. H.W. Lewis: Multiple scattering in an infinite medium. Phys. Rev. 78, 526 (1950)

    MATH  ADS  Google Scholar 

  43. G. Molière: Theorie der Streuung schneller geladener Teilchen II. Mehrfachstreuung und Vielfachstreuung. Z. Naturforschg A 3, 78 (1948)

    ADS  Google Scholar 

  44. H.S. nyder, W.T. Scott: Multiple scattering of fast charged particles. Phys. Rev. 76, 220 (1949)

    ADS  Google Scholar 

  45. H.A. Bethe: Molière’s theory of multiple scattering. Phys. Rev. 89, 1256 (1953)

    MathSciNet  MATH  ADS  Google Scholar 

  46. W. Bothe: Durchgang von Elektronen durch Materie. In Handbuch der Physik, Vol.22/2, hersg. v. H. Geiger and K. Scheel (Springer, Berlin 1933 ) p. 1

    Google Scholar 

  47. V.E. Cosslett, R.N. Thomas: Multiple scattering of 5–30 keV electrons in evaporated metal films. I. Total transmission and angular distribution. Brit. J. Appl. Phys. 15, 883 (1964)

    Google Scholar 

  48. P. Gentsch, H. Gilde, L. Reimer: Measurement of the top-bottom effect in STEM of thick amorphous specimens. J. Microsc. 100, 81 (1974)

    Google Scholar 

  49. J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: Quantitative x-ray analysis in the electron microscope. SEM 1977/I (I’1“l’RI, Chicago 1977 ) p. 315

    Google Scholar 

  50. K. Jost, J. Kessler: Die Ortverteilung mittelschneller Elektronen bei Mehrfachstreuung. Z. Physik 176, 126 (1963)

    ADS  Google Scholar 

  51. L. Reimer, H. Gilde, K.H. Sommer: Die Verbreiterung eines Elektronenstrahles (17–1200 keV) durch Mehrfachstreuung. Optik 30, 590 (1970)

    Google Scholar 

  52. T. Groves: Thick specimens in the CEM and STEM. Resolution and image formation. Ultramicroscopy 1, 15 and 170 (1975)

    Google Scholar 

  53. H. Rose: The influence of plural scattering on the limit of resolution in electron microscopy. Ultramicroscopy 1, 167 (1975)

    Google Scholar 

  54. D.F. Kyser, K. Murata: Application of Monte-Carlo simulation to electron microprobe analysis of thin films on substrates. In Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy. NBS Spec. Publ. 460 ( U.S. Dep. of Commerce, Washington, DC 1976 ) p. 129

    Google Scholar 

  55. D.F. Kyser: Monte Carlo calculations for electron microscopy, microanalysis, and microlithography. In Electron Beam Interactions with Solids ed. by D.F. Kyser et al. (SEM Inc., AMF O’Hare, IL 1982 ) p. 119

    Google Scholar 

  56. H. Bethe: Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. 5, 325 (1930)

    MATH  Google Scholar 

  57. H. Bethe: Quantenmechanik der Ein- und Zwei-Elektronenprobleme. In Handbuch der Physik 24, hersg. v. J. Geiger and K. Scheel ( Springer, Berlin 1933 ) p. 273

    Google Scholar 

  58. R.D. Evans: The Atomic Nucleus. Int’l. Ser. in Pure and Appl. Phys. ( McGraw Hill, New York 1955 )

    Google Scholar 

  59. N. Bohr: The penetration of atomic particles through matter. Kgl. Danske Videnskabernes. Selskat, Matematisk-fysike Medd. 18, No. 8 (1948)

    Google Scholar 

  60. H.A. Bethe, J. Ashkin: Passage of radiation through matter. In Experimental Nuclear Physics, Vol. 1, ed. by E. Segrè ( Wiley, New York 1953 ) p. 166

    Google Scholar 

  61. M.J. Berger, S.M. Seltzer: Tables of energy loss and ranges of electrons and positrons. Nat. Acad. Sci., Nat. Res. Council Publ. 1133, Washington DC (1964) p. 205

    Google Scholar 

  62. R. Whiddington: The transmission of cathode rays through matter. Proc. Roy. Soc. A 86, 360 (1912); 89, 554 (1914)

    Google Scholar 

  63. H.M. Terrill: Loss of velocity of cathode rays in matter. Phys. Rev. 22, 101 (1923)

    ADS  Google Scholar 

  64. L. Reimer, K. Brockmann, U. Rhein: Energy losses of 20–40 keV electrons in 150–650 fig/cm2 metal films. J. Phys. D 11, 2151 (1978)

    ADS  Google Scholar 

  65. D.C. Joy, S. Luo: An empirical stopping power relationship for low-energy electrons. Scanning 11, 176 (1989)

    Google Scholar 

  66. D.C. Joy, S. Luo, X. Zhang: Electron stopping powers and their experimental determination. In Electron Microscopy 1990, Vol. 2 ( San Francisco Press, San Francisco 1990 ) p. 8

    Google Scholar 

  67. S. Luo, X. Zhang, D.C. Joy: Experimental determination of electron stopping power at low energies. Rad. Effects and Defects in Solids 117, 235 (1991)

    ADS  Google Scholar 

  68. D.C. Joy, S. Luo, J.R. Dunlap, D. Williams, S. Cao: Stopping-power determination for compounds by EELS. In Proc. 52th Ann. Meeting Mier. Soc. of America ( San Francisco Press, San Francisco 1994 ) p. 948

    Google Scholar 

  69. T.S. Rao-Sahib, D.B. Wittry: X-ray continuum from thick element targets for 10–50 keV electrons, J. Appl. Phys. 45, 5060 (1974)

    ADS  Google Scholar 

  70. C.J. Tung, J.C. Ashley, R.H. Ritchie: Electron inelastic mean free paths and energy losses in solids II. Surf. Sci. 81, 427 (1979)

    ADS  Google Scholar 

  71. R.M. Nieminen: Stopping power for low-energy electrons. Scanning Microscopy 2, 1917 (1988)

    Google Scholar 

  72. L. Landau: On the energy loss of fast electrons by ionization. J. Phys. USSR 8, 201 (1944)

    Google Scholar 

  73. O. Blunck, S. Leisegang: Zum Energieverlust schneller Elektronen in dünnen Schichten. Z. Physik 128, 500 (1950)

    ADS  Google Scholar 

  74. D.F. Hebbard, P.R. Wilson: The effect of multiple scattering on energy loss distributions. Austral. J. Phys. 8, 90 (1955)

    Google Scholar 

  75. C.N. Yang: Actual path length of electrons in foils. Phys. Rev. 84, 599 (1951)

    ADS  Google Scholar 

  76. L. Reimer, R. Senkel: Calculation of enery spectra of electrons transmitted through thin aluminium foils. J. Phys. D 25, 1371 (1992)

    ADS  Google Scholar 

  77. L. Reimer: Calculation of the angular and energy distribution of multiple scattered electrons using Fourier transforms. Ultramicroscopy 31, 169 (1989)

    Google Scholar 

  78. H. Drescher, L. Reimer, H. Seidel: Rückstreukoeffizient and Sekundärelektronen-Ausbeute von 10–100 keV Elektronen and Beziehungen zur Raster-Elektronenmikroskopie. Z. angew. Phys. 29, 331 (1970)

    Google Scholar 

  79. A.F. Makhov: The penetration of electrons into solids. Sov. Phys. Solid State 2, 1934. 1942 and 1945 (1961)

    Google Scholar 

  80. A. Ya. Vyatskin, A.N. Pilyankevich: Some energy characteristics of electron passage through a solid. Sov. Phys. Solid State 5, 1662 (1964)

    Google Scholar 

  81. R. Böngeler, U. Golla, M. Kässens, L. Reimer, B. Schindler, R. Senkel, N1. Spranck: Electron-specimen interactions in LVSEM. Scanning 15, 1 (1993)

    Google Scholar 

  82. L. Reimer: Electron-specimen interactions and image formation in LVSEM. In Electron Microscopy 1992, Vol. 1, ed. by A. Rios et al. ( Secr. Publ. Univers. Granada, Spain 1992 ) p. 9

    Google Scholar 

  83. M. Kotera, K. Murata, K. Nagami: Monte Carlo simulation of 1–10 keV electron scattering in a gold target. J. Appl. Phys. 52, 997 (1981)

    ADS  Google Scholar 

  84. M. Kotera, K. Murata, K. Nagami: Monte Carlo simulation of 1–10 keV. electron scattering in an aluminium target. J. Appl. Phys. 52, 7403 (1981)

    ADS  Google Scholar 

  85. H. Kanter, E.J. Sternglass: Interpretation of range measurements for kilo- volt electrons in solids. Phys. Rev. 126, 620 (1962)

    ADS  Google Scholar 

  86. J.E. Holliday, E.J. Sternglass: New method for range measurements of low energy ellectrons in solids. J. Appl. Phys. 30, 1428 (1959)

    ADS  Google Scholar 

  87. V.E. Cosslett, R.N. Thomas: Multiple scattering of 5–30 keV electrons in evaporated metal films. II Range-energy relations. Brit. J. Appl. Phys. 15, 1283 (1964)

    ADS  Google Scholar 

  88. V.V. Makarov: Spatial distribution of excitation density in a solid bombarded by electrons at 0.5–500 eV. Sov. Phys. Techn. Phys. 23, 324 (1978)

    Google Scholar 

  89. H. Kanter: Electron scattering by thin foils for energies below 10 keV. Phys. Rev. 121, 461 (1961)

    ADS  Google Scholar 

  90. in metals. J. Phys. D 16, 2257 (1983)

    Google Scholar 

  91. I.R. Kanicheva„ V.V. Burtsev: Investigation of transmission of 0.5–16 keV electrons through collodion and gold films. Sov. Phys. Solid State 1, 1146 (1960)

    Google Scholar 

  92. J.R. Young: Penetration of electrons and ions in aluminium. J. Appl. Phys. 27, 1 (1956)

    ADS  Google Scholar 

  93. W.F. Libby: Measurement of radioactive tracers. Anal. Chem. 19, 2 (1947)

    Google Scholar 

  94. R.O. Lane, D.J. Zaffarano: Transmission of 0–40 keV electrons by thin films with application to beta-ray spectroscopy. Phys. Rev. 94, 960 (1954)

    ADS  Google Scholar 

  95. T.E. Everhart, P.H. Hoff: Determination of kilovolt electron energy dissipation vs penetration distance in solid materials. J. Appl. Phys. 42, 5837 (1971)

    ADS  Google Scholar 

  96. A.E. Grün: Lumineszenz-photometrische Messungen der Energieabsorption im Strahlungsfeld von Elektronenquellen, Eindimensionaler Fall in Luft. Z. Naturforschg. A 12, 89 (1957)

    ADS  Google Scholar 

  97. L. Reimer, H. Seidel, H. Gilde: Einfluß der Elektronendiffusion auf die Bildentstehung im Rasterelektronenmikroskop. Beitr. elektr. mikr. Direktabb. Oberft. 1, 53 (1968)

    Google Scholar 

  98. A. Cohn, G. Caledonia: Spatial distribution of the fluorescent radiation emission caused by an electron beam. J. Appl. Phys. 41, 3767 (1970)

    ADS  Google Scholar 

  99. W. Ehrenberg, D.E.N. King: The penetration of electrons into luminescent materials. Proc. Phys. Soc. 81, 751 (1963)

    ADS  Google Scholar 

  100. M. Hatzakis: New method of observing electron penetration profiles in solids. Appl. Phys. Lett. 18, 7 (1971)

    ADS  Google Scholar 

  101. B. Linnemann, L. Reimer: Electron flux inside a gas target. Scanning 4, 199 (1981)

    Google Scholar 

  102. L. Reimer: Monte-Carlo-Rechnungen zur Elektronendiffusion. Optik 27, 86 (1968)

    Google Scholar 

  103. D.F. Kyser, D.B. Wittry: Spatial distribution of excess carriers in electron-beam excited semiconductors. Proc. IEEE 55, 733 (1967)

    Google Scholar 

  104. C. Donolato: On the theory of SEM charge-collection imaging of localized defects in semiconductors. Optik 52, 19 (1978)

    Google Scholar 

  105. J.F. Bresse: Electron beam induced current in silicon planar p-n junctions: physical model of carrier generation. Determination of some physical parameters in silicon. SEM 1972 ( ITTRI, Chicago 1972 ) p. 105

    Google Scholar 

  106. I.E. Everhart: Simple theory concerning the reflection of electrons from solids. J. Appl. Phys. 31, 1483 (1960)

    ADS  Google Scholar 

  107. G.D. Archard: Backscattering of electrons. J. Appl. Phys. 32, 1505 (1961)

    ADS  Google Scholar 

  108. H.A. Bethe, M.E. Rose, L.P. Smith: The multiple scattering of electrons. Proc. Amer. Phil. Soc. 78, 573 (1938)

    Google Scholar 

  109. K. Kanaya, S. Ono: The energy dependence of a diffusion model for an electron probe into solid targets. J. Phys. D 11, 1495 (1978)

    ADS  Google Scholar 

  110. H.W. Thümmel: Durchgang von Elektronen und Betastrahlung durch Materieschichten. Streuabsorptionsmodelle (Akad. Verlag, Berlin 1974 )

    Google Scholar 

  111. H. Niedrig: Ein kombiniertes Einfachstreu- und Diffusionsmodell für die Elektronen-Rückstreuung dünner Schichten. Beitr. elektr. mikr. Direktabb. Oberft. 14, 291 (1981)

    Google Scholar 

  112. H. Niedrig: Analytical models in electron backscattering. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, IL 1982 ) p. 51

    Google Scholar 

  113. U. Werner, H. Bethge, J. Heydenreich: An analytical model of electron backscattering for the energy range 10–100 keV. Ultramicroscopy 8, 417 (1982)

    Google Scholar 

  114. H.J. Dudek: Ein Rechenmodell zur räumlichen Beschreibung der Elektronenstrahl-Materie-Wechselwirkung. Optik 56, 149 (1980)

    Google Scholar 

  115. Z.T. Bödy: On the backscattering of electrons from solids. Brit. J. Appl. Phys. 13, 483 (1962)

    ADS  Google Scholar 

  116. L.V. Spencer: Theory of electron penetration. Phys. Rev. 98, 1597 (1955)

    MATH  ADS  Google Scholar 

  117. D.J. Fathers, P. Rez: A transport equation theory of electron. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, IL 1982 ) p. 193

    Google Scholar 

  118. K.E. Hoffmann, H. Schmoranzer: Inelastic and elastic multiple scattering of fast electrons described by the transport equation. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, IL 1982 ) p. 209

    Google Scholar 

  119. ] E.R. Krefting, L. Reimer: Monte-Carlo Rechnungen zur Elektronendiffusion. In Quantitative Analysis with Electron Microprobes and Microanalysis, ed. by E. Preuss (Kernforschungsanlage Jülich 1973) Jül-Conf.-8, p.114

    Google Scholar 

  120. K.F.J. Heinrich, D.E. Newbury, H. Yakowitz (eds.): In Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy. NBS Spec. Publ. 460 ( U.S. Dep. of Commerce, Washington, DC 1976 )

    Google Scholar 

  121. J. Hénoc, F. Maurice: Characteristics of a Monte Carlo program for microanalysis study of energy loss. In Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy. NBS Spec. Publ. 460 ( U.S. Dep. of Commerce, Washington, DC 1976 ) p. 61

    Google Scholar 

  122. R.L. Myklebust, D.E. Newbury, H. Yakowitz: NBS Monte Carlo electron trajectory calculation program. In Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy. NBS Spec. Publ. 460 ( U.S. Dep. of Commerce, Washington, DC 1976 ) p. 105

    Google Scholar 

  123. R. Shimizu, Y. Kataoka, T. Matsukawa, T. Ikuta, M. Murata, H. Hashimoto: Energy distribution measurement of transmitted electrons and Monte Carlo simulation for kilovolt electron. J. Phys. D 8, 820 (1975)

    ADS  Google Scholar 

  124. R. Shimizu, Y. Kataoka, T. Ikuta, T. Koshikawa, H. Hashimoto: A Monte Carlo approach to the direct simulation of electron penetration in solids. J. Phys. D 9, 101 (1976)

    ADS  Google Scholar 

  125. D.C. Joy: An introduction to Monte Carlo simulations. Scanning Electron Microscopy 5, 329 (1991)

    ADS  Google Scholar 

  126. D.C. Joy: Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford Univ. Press, New York, Oxford 1995 )

    Google Scholar 

  127. L. Reimer, D. Stelter: FORTRAN 77 Monte Carlo program for minicomputers using Mott cross-sections. Scanning 8, 265 (1986)

    Google Scholar 

  128. L. Reimer, R. Senkel: Monte Carlo simulations in low voltage electron microscopy. Optik 98, 85 (1995)

    Google Scholar 

  129. L. Reimer: Monte Carlo simulation techniques for quantitative x-ray microanalysis. In Microbeam and Nanobeam Analysis, ed. by D. Benoit et al., Mikrochim. Acta [Suppl.] 13, 1 (1996)

    Google Scholar 

  130. J.J. Quinn: Range of excited electrons in metals. Phys. Rev. 126, 1453 (1962)

    MATH  ADS  Google Scholar 

  131. H.W. Streitwolf: Zur Theorie der Sekundärelektronenemission von Metallen: der Anregungsprozeß. Ann. Physik 3, 183 (1959)

    MATH  ADS  Google Scholar 

  132. Z.J. Ding, R. Shimizu: A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production. Scanning 18, 92 (1996)

    Google Scholar 

  133. L. Reimer, M. Kässens, L. Wiese: Monte Carlo simulation program with a free configuration of specimen and detector geometries. In Micro beam and Nanobeam Analysis, ed. by D. Benoit et al., Mikrochim. Acta [Suppl.] 13, 485 (1996)

    Google Scholar 

  134. C.O. Schiebl, A. Pfeiffer, H.W. Wagner, W.S.M. Werner, H. Stippel: Monte Carlo simulation of electron scattering for arbitrary 2D structures using a modified quadtree geometry discretization. In Microbeam and Nanobeam Analysis, ed. by D. Benoit et al., Mikrochim. Acta [Suppl.] 13, 533 (1996)

    Google Scholar 

  135. L. Reimer: MOCASIM — Ein Monte Carlo Programm für Forschung und Lehre. Beitr. elektr. mikr. Direktabb. Oberft. 29, 1 (1996)

    Google Scholar 

  136. H.J. Dudek: Zeitlicher Temperaturanstieg im Material bei Elektronenbe- strahlung. Beitr. elektr. mikr. Direktabb. Oberft. 3, 179 (1970)

    Google Scholar 

  137. R. Christenhuß, L. Reimer: Schichtdickenabhängigkeit der Wärmeerzeugung durch Elektronenbestrahlung im Energiebereich zwischen 9 und 100 keV. Z. angew. Phys. 23, 397 (1967)

    Google Scholar 

  138. L.G. Pittaway: The temperature distribution in thin foil and semi-infinite targets bombarded by an electron beam. Brit. J. Appl. Phys. 15, 967 (1964)

    ADS  Google Scholar 

  139. H. Kohl, H. Rose, H. Schnabl: Dose-rate effect at low temperatures in FBEM and STEM due to object-heating. Optik 58, 11 (1981)

    Google Scholar 

  140. C.W. Price, P.L. McCarthy: Low-voltage SEM of low-density materials. Scanning 10, 29 (1988)

    Google Scholar 

  141. J. Cazaux: Some considerations on the electric field induced in insulators by electron bombardment. J. Appl. Phys. 59, 1418 (1986)

    ADS  Google Scholar 

  142. J. Cazaux, C. LeGressus: Phenomena relating charge in insulators: macroscopic effects and microscopic causes. Scanning Microscopy 5, 17 (1991)

    Google Scholar 

  143. K. Kotera, H. Suga: A simulation of keV electron scattering in a chargedup specimen. J. Appl. Phys. 63, 261 (1988)

    ADS  Google Scholar 

  144. V.I. Arkhipov, A.I. Rudenko, G.M. Sessler: Space-charge distribution in electron-beam charged dielectrics. J. Phys. D 24, 731 (1991)

    ADS  Google Scholar 

  145. R. Rettig, M. Kässens, L. Reimer: Measurement of specimen charging in SEM with a Kelvin probe. Scanning 16, 221 (1994)

    Google Scholar 

  146. R.D. van Veld, T.J. Shaffner: Charging effects in SEM. SEM 1971 ( ITTRI, Chicago 1971 ) p. 17

    Google Scholar 

  147. H. Fujioka, K, Nakamae, K. Ura: Core model for potential distribution on insulator surfaces in the SEM. In Electron Microscopy 1986, Vol. 1, ed. by T. Imura et al. ( Jpn. Soc. of Electron Microscopy, Tokyo 1986 ) p. 643

    Google Scholar 

  148. S.C.J. Garth: Electron beam testing of ultra large scale ICs. Microelectr. Eng. 4, 121 (1986)

    Google Scholar 

  149. M.H. Ying, J.T.L. Thong: Insulator charging under irradiation with a stationary electron probe. Meas. Sci. Techn. 5, 1089 (1994)

    ADS  Google Scholar 

  150. L. Reimer, U. Golla, R. Böngeler, M. Kässens, B. Schindler, R. Senkel: Charging of bulk specimens, insulating layers and free-supporting films in SEM. Optik 92, 14 (1992)

    Google Scholar 

  151. D.M. Taylor: The effect of passivation on the observation of voltage contrast in the SEM. J. Phys. D 11, 2443 (1978)

    ADS  Google Scholar 

  152. W.W. Adams, G. Price, S.J. Krause: Imaging of polymer single crystals in low-voltage, high-resolution SEM. In Electron Microscopy 1990, Vo1. 4 ( San Francisco Press, San Francisco 1994 ) p. 1106

    Google Scholar 

  153. T. Ichinokawa, M. lijama, A. Onoguchi, T. Kobayashi: Charging effect of specimen in SEM. Jpn. J. Appl. Phys. 13, 1272 (1974)

    ADS  Google Scholar 

  154. D.C. Joy: Control of charging in low-voltage SEM. Scanning 11, 1 (1989)

    Google Scholar 

  155. M. Knoll: Aufladepotential und Sekundäremission elektronenbestrahlter Körper. Z. Techn. Phys. 16, 467 (1935)

    Google Scholar 

  156. H. Fujioka, K. Miyaji, K. Ura: A new method for measuring charging characteristics of an electrically floating target under electron beam irradiation. J. Phys. E 21, 583 (1988)

    ADS  Google Scholar 

  157. H.E. Bauer, H. Seiler: Determination of the non-charging electron beam energies of electrically floating metal samples. SEM 1984/III ( SEM Inc. AMF O’Hare, IL 1984 ) p. 1081

    Google Scholar 

  158. M. Ostrow, E. Menzel, E. Postulka, S. Görlich, E. Kubalek: IC-internal electron beam logic state analysis. SEM 1982/I1 ( SEM Inc. AMF O’Hare, IL 1982 ) p. 563

    Google Scholar 

  159. M. Brunner, E. Menzel: Surface potential measurements on floating targets with a parallel beam technique. J. Vac. Sci. Techn. B 1, 1344 (1983)

    Google Scholar 

  160. W. Liu, J. Ingino, R.F. Pease: Resist charging in electron beam lithography. J. Vac. Sci. Techn. B 13, 1979 (1995)

    ADS  Google Scholar 

  161. M. Brunner, D. Winkler, B. Lischke: Crucial parameters in electron beam short/open testing. In Microcircuit Engineering 1984 ( Academic, London 1985 )

    Google Scholar 

  162. J. Chang, S. Krause, R. Gorur: Application of low-voltage SEM to studies of polymer near-surface diffusion and hydrophobicity. In Electron Microscopy 1990, Vol. 4 ( San Francisco Press, San Francisco 1990 ) p. 1108

    Google Scholar 

  163. H.J. Fitting, P. Magdanz, W. Mehnert, D. Hecht, Th. Hingst: Charge trap spectroscopy in single and multiple layer dielectrics. Phys. Stat. Solidi (a) 122, 297 (1990)

    ADS  Google Scholar 

  164. N. Sugiyama, S. Ikeda, J. Uchikawa: Low voltage SEM inspection of microelectronic devices. J. Electron Microsc. 35, 9 (1986)

    Google Scholar 

  165. E.A. Flinn, M. Salehi: Accuracy of the theoretical predictions concerning the location of the cross-over points on the secondary-electron emission yield curve. J. Appl. Phys. 52, 5800 (1981)

    ADS  Google Scholar 

  166. L.A. Weitzenkamp: Measurement of fibre potentials in a SEM. J. Phys. E 2, 561 (1969)

    ADS  Google Scholar 

  167. D.R. Clarke, P.R. Stuart: An anomalous contrast effect in the SEM. J. Phys. E 3, 705 (1970)

    ADS  Google Scholar 

  168. M. Brunner: Simulation of BSE by reflection of primary electrons applieto optimization of detector designs. Appl. Phys. Lett. 43, 391 (1983)

    ADS  Google Scholar 

  169. J. Hejna, L. Reimer: Backscattered electron multidetector systems for improved quantitative topographic contrast. Scanning 9, 162 (1987)

    Google Scholar 

  170. R. Autrata, J. Hejna: Detectors for LVSEM. Scanning 13, 275 (1991)

    Google Scholar 

  171. P. Echlin: Sputter coating techniques for SEM. SEM 1975 (ITTRI Chicago 1975 ) p. 217

    Google Scholar 

  172. P.N. Panayi, D.C. Cheshire, P. Echlin: A cool sputtering system for coating heat-sensitive specimens. SEM 1977/I ( ITTRI, Chicag 1977 ) p. 463

    Google Scholar 

  173. G. Pfefferkorn: Specimen preparation techniques. SEM 1970 (ITTRI Chicago 1970 ) p. 89

    Google Scholar 

  174. R.O. Kelley, R.A.F. Dekker, J.G. Bluemink: Ligand-mediated osmium binding: its application in coating biological specimens for SEM. J. Ultrastruct. Res. 45, 254 (1973)

    Google Scholar 

  175. L.E. Malick, R.B. Wilson: Evaluation of a modified technique for SEM examination of vertebrate specimens without evaporated metal layers. SEM 1975 ( ITTRI, Chicago 1975 ) p. 259

    Google Scholar 

  176. G.V. Spivak, E.I. Rau, A.E. Lukianov, V.I. Petrov, M.V. Bicov: Des images non altérées des isolants dans un microscope électronique à balayage. In Electron Microscopy 1972 ( Inst. of Physics, London 1972 ) p. 492

    Google Scholar 

  177. P. Morin, M. Pitaval, E. Vicario: Direct observation of insulators by SEM. In Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 115

    Google Scholar 

  178. G. Pfefferkorn, H. Grüter, M. Pfautsch: Observations on the prevention of specimen charging. SEM 1972 ( ITTRI, Chicago 1972 ) p. 147

    Google Scholar 

  179. P.R. Thornton: Scanning Electron Microscopy: Applications to Materials and Devices ( Chapman and Hall, London 1968 ) p. 179

    Google Scholar 

  180. C.K. Crawford: Ion charge neutralization effects in SEM. SEM 1980/IV ( SEM Inc., AMF O’Hare, IL 1980 ) p. 11

    Google Scholar 

  181. G.D. Danilatos, R. Postle: The environmental SEM and its applications. SEM 1982/I ( SEM Inc., AMF O’Hare, IL 1982 ) p. 1

    Google Scholar 

  182. L. Reimer: Irradiation changes in organic and inorganic objects. Lab. Invest. 14, 1082 (1965)

    Google Scholar 

  183. K. Stenn, G.F. Bahr: Specimen damage caused by the beam of the TEM, a correlative consideration. J. Ultrastruct. Res. 31, 526 (1970)

    Google Scholar 

  184. B.M. Siegel, D.R. Beaman (eds.): Physical Aspects of Electron Microscopy and Microbeam Analysis ( Wiley, New York 1975 )

    Google Scholar 

  185. M.S. Isaacson: Specimen damage in the electron microscope. In Principles and Techniques of Electron Microscopy, Vol. 7, ed. by M.A. Hayat ( Van Nostrand-Reinhold, New York 1977 ) p. 1

    Google Scholar 

  186. R.M. Glaeser, K.A. Taylor: Radiation damage relative to TEM of biological specimens at low temperatures: a review. J. Microsc. 122, 127 (1978)

    Google Scholar 

  187. L. Reimer, A. Schmidt: The shrinkage of bulk polymers by radiation damage in an SEM. Scanning 7, 47 (1985)

    Google Scholar 

  188. S.J. Erasmus: Damage to resist structures during SEM inspection. J. Vac. Sci. Techn. B 5, 409 (1987)

    Google Scholar 

  189. W. Bröcker, E.R. Krefting, L. Reimer: Beobachtung der Strahlenschädigung während des Abrastvorganges im Raster-Elektronenmikroskop mit Hilfe der Kathodolumineszenz. Beitr. elektr. mikr. Direktabb. Oberfl. 7, 75 (1974)

    Google Scholar 

  190. J.B. Pawley, P. Walther, S.J. Shih, M. Malecki: Early results using highresolution, low-voltage low-temperature SEM. J. Microsc. 161, 327 (1991)

    Google Scholar 

  191. P. Walther, E. Wehrli, R. Hermann, M. Müller: Double-layer coating for high-resolution low-temperature SEM. J. Microsc. 179, 229 (1995)

    Google Scholar 

  192. L.W. Hobbs: Radiation effects in analysis of inorganic specimens by TEM, in Introduction to Analytical Electron Microscopy, ed. by J.J. Hren et al. ( Plenum, New York 1979 ) p. 437

    Google Scholar 

  193. D.L. Medlin, D.G. Howitt: Radiation damage processes affecting electron beam lithography of inorganic materials. Scanning 14, 86 (1992)

    Google Scholar 

  194. A.K. Varshneya, A.R. Cooper, M.J. Cable: Changes in composition during electron microprobe analysis of K2O-SrO-SiO2 glass. J. Appl. Phys. 37, 2199 (1966)

    ADS  Google Scholar 

  195. M.P. Boron, R.E. Hanneman: Local compositional changes in alkali silicate glasses during electron microprobe analysis. J. Appl. Phys. 38, 2406 (1967)

    ADS  Google Scholar 

  196. K. Jurek, V. Hulinskÿ, O. Gedeon: Electron beam induced migration of alkaline ions in silica glass. Mikrochim. Acta, Suppl. 13, 339 (1996)

    Google Scholar 

  197. W. Bröcker, L. Reimer: Specimen damage by negative oxygen ions from the SEM cathode detected by CdS cathodoluminescence. Scanning 1, 60 (1978)

    Google Scholar 

  198. O.C. Wells: Ion damage to the specimen in the SEM studied by the EBIC technique. Scanning 1, 182 (1978)

    Google Scholar 

  199. J.J. Hren: Barriers to AEM: Contamination and etching. In Introduction to Analytical Electron Microscopy, ed. by J.J. Hren et al. ( Plenum, New York 1979 ) p. 481

    Google Scholar 

  200. J.P. Martin, R. Speidel: Zur Verwendung von Dünnschicht-Aperturblenden im Elektronen-Rastermikroskop. Beitr. elektr. mikr. Direktabb. Oberft. 4/2, 345 (1971)

    Google Scholar 

  201. J.B. Pawley: LVSEM for high resolution topographic and density contrast imaging. Adv. Electr. Electron Phys. 83, 203 (1992)

    Google Scholar 

  202. P. Hirsch, M. Kässens, N1. Püttmann, L. Reimer: Contamination in a SEM and the influence of specimen cooling. Scanning 16, 101 (1994)

    Google Scholar 

  203. K.H. Müller: Elektronen-Mikroschreiber mit geschwindigkeits-gesteuerter Strahlführung. Optik 33, 296 (1971)

    Google Scholar 

  204. J.T. Fourie: Contamination phenomena in cryopumped TEM and ultrahigh vacuum field-emission STEM systems. SEM 1976/I ( ITTRI, Chicago IL 1976 ) p. 53

    Google Scholar 

  205. G. Love, V.D. Scott, N.M.T. Dennis, L. Laurenson: Sources of contamination in electron optical equipment. Scanning 4, 32 (1981)

    Google Scholar 

  206. E.K. Brandis, F.W. Anderson, R. Hoover: Reduction of carbon contamination in the SEM. SEM 1971 ( ITTRI, Chicago 1971 ) p. 505

    Google Scholar 

  207. A.T. Marshall: Residual gas analysis in a SEM. J. Microsc. 133, 119 (1984)

    Google Scholar 

  208. H.G. Heide: Die Objektverschmutzung im Elektronenmikroskop und das Problem der Strahlenschädigung durch Kohlenstoffabbau. Z. angew. Phys. 15, 116 (1963)

    Google Scholar 

  209. D. Wang, P.C. Hoyle, J.R.A. Cleaver, G.A. Porkolab, N.C. MacDonald: Lithography using electron beam induced etching of a carbon film. J. Vac. Sci. Techn. B 13, 1984 (1995)

    Google Scholar 

  210. L. Reimer: Image Formation in Low-Voltage Scanning Electron Microscopy, Tutorial Texts in Optical Engineering, Vol. TT 12 ( SPIE, Optical Engineering Press, Bellingham WA 1993 )

    Google Scholar 

  211. H.G. Heide: Die Objektraumkühlung im Elektronenmikroskop. Z. angew. Phys. 17, 73 (1964)

    Google Scholar 

  212. V. Harada, T. Tomita, T. Watabe, H. Watanabe, T. Etoh: Reduction of contamination in analytical electron microscopy. SEM 1979/II ( SEM Inc., AMF O’Hare, IL 1979 ) p. 103

    Google Scholar 

  213. L. Reimer, M. Wächter: Contribution to the contamination problem in TEM. Ultramicroscopy 3, 169 (1978)

    Google Scholar 

  214. R. Buhl: Verringerung der Kontamination durch Ionen-Bombardement der das Präparat umgebenden Wände. Optik 19, 122 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1998). Electron Scattering and Diffusion. In: Scanning Electron Microscopy. Springer Series in Optical Sciences, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38967-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38967-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08372-3

  • Online ISBN: 978-3-540-38967-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics