Skip to main content

Elemental Analysis and Imaging with X-Rays

  • Chapter
Scanning Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 45))

Abstract

The deceleration of fast electrons in the Coulomb field of a nucleus can result in the emission of a background x-ray quantum. The de-excitation of an inner-shell ionization results either in the emission of a characteristic x-ray quantum or in the emission of an Auger electron, both of which can be used for elemental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.K. Arawal: X-Ray Spectroscopy, an Introduction, 2nd edn., Springer Ser. Opt. Sci. Vol. 15 ( Springer, Berlin, Heidelberg 1991 )

    Google Scholar 

  2. R.H. Pratt, H.K. Tseng, C.M. Lee, L. Kissel: Bremsstrahlung energy spectra from electrons of kinetic energy 1 keV Tl 2000 keV incident on neutral atoms 2 Z 92. Atomic Data and Nuclear Data Tables 20, 175 (1977)

    ADS  Google Scholar 

  3. H.K. Tseng, R.H. Pratt, C.M. Lee: Electron bremsstrahlung angular distributions in the 1–500 keV energy range. Phys. Rev. A 19, 187 (1979)

    ADS  Google Scholar 

  4. A. Sommerfeld: Uber die Beugung und Bremsung der Elektronen. Ann. Phys. 11, 257 (1931)

    Google Scholar 

  5. P. Kirkpatrick, L. Wiedmann: Theoretical continuous x-ray energy and polarization. Phys. Rev. 67, 321 (1945)

    ADS  Google Scholar 

  6. H.H. Kramers: On the theory of x-ray absorption and of the continuous x-ray spectrum. Phil. Mag. 46, 836 (1923)

    Google Scholar 

  7. L. Reimer, P. Bernsen: Total rate imaging with x-rays in a SEM. SEM 1984/IV ( SEM Inc., AMF O’Hare, IL 1984 ) p. 1707

    Google Scholar 

  8. H. Kulenkampff: Das kontinuierliche Röntgenspektrum. In Handbuch der Physik, Bd. 23/2, ed. by H. Geiger and K. Scheel ( Springer, Berlin 1933 ) p. 142

    Google Scholar 

  9. S.T. Stephenson: The continuous x-ray spectrum. In Encyclopedia of Physics, Vol. 30, ed. by S. Flügge ( Springer, Berlin 1957 ) p. 337

    Google Scholar 

  10. W.L. Baun: Changes in x-ray emission spectra observed between pure elements in combination with others to form compounds or alloys. Adv. Electr. Electron Phys. Suppl. 6, 155 (1969)

    Google Scholar 

  11. A. Faessler, M. Goehring: Röntgenspektrum und Bindungszustand. Die Ka-Fluoreszenzstrahlung des Schwefels. Naturwiss. 39, 169 (1952)

    ADS  Google Scholar 

  12. E.H.S. Burhop: Le rendement de fluorescence. J. Phys. Radium 16, 625 (1965)

    Google Scholar 

  13. W. Bambynek, B. Crasemann, R.W. Fink, H.U. Freund, H. Mark, C.D. Swift, R.E. Price, P.V. Rao: X-ray fluorescence yields, Auger, and CosterKronig transition probabilities. Rev. Mod. Phys. 44, 716 (1972)

    ADS  Google Scholar 

  14. K.F.J. Heinrich: Electron Beam X-Ray Microanalysis ( Van Nostrand, New York 1981 )

    Google Scholar 

  15. N.A. Dyson: X-Rays in Atomic and Nuclear Physics ( Longman, London 1973 )

    Google Scholar 

  16. K.F.J. Heinrich: X-ray absorption uncertainty. In The Electron Microprobe, ed. by T.D. McKinley et al. (Wiley, New York ) p. 296

    Google Scholar 

  17. J.Z. Frazer: A computer fit to mass absorption coefficient data. Rep. S.I.O. 67–29, Inst. for the Study of Matter (Univ. of California, La Jolla 1967 )

    Google Scholar 

  18. G. Springer, B. Nolan: Mathematical expression for the evaluation of x-ray emission and critical energies, and of mass absorption coefficients. Canad. J. Spectr. 21, 134 (1976)

    Google Scholar 

  19. R. Theisen: Quantitative Electron Microprobe Analysis (Springer, Berlin, Heidelberg 1965 )

    Google Scholar 

  20. W.J. Veigele: Photon cross-sections from 0.1 keV to 1 MeV for elements Z=1 to Z=94. Atomic Data Tables 5, 51 (1973)

    ADS  Google Scholar 

  21. B.L. Henke, E.M. Gullikwa, J.C. Davies: X-ray interactions: photoabsorption, scattering, transmission and reflection at E=50–30000 eV, Z=1–92. Atomic Data and Nucl. Tables 54, 181 (1993)

    Google Scholar 

  22. E.H.S. Burhop: The Auger Effect (Cambridge Univ. Press, Cambridge 1952 )

    Google Scholar 

  23. T.A. Carlson: Photoelectron and Auger Electron Spectroscopy ( Plenum, New York 1974 )

    Google Scholar 

  24. T. Aberg, G. Howart: Theory of the Auger Effect. In Encyclopedia of Physics, Vol. 32, ed. by S. Flügge ( Springer, Berlin, Heidelberg 1982 ) p. 469

    Google Scholar 

  25. H.H. Madden: Chemical information from Auger electron spectroscopy. J. Vac. Sci. Techn. 18, 677 (1981)

    ADS  Google Scholar 

  26. M.P. Seah: A review of quantitative Auger electron spectrocopy. SEM 1983/II ( SEM Inc., AMF O’Hare, IL 1983 ) p. 521

    Google Scholar 

  27. M.L. Tarng, G.K. Wehner: Escape length of Auger electrons. J. Appl. Phys. 44, 1534 (1973)

    ADS  Google Scholar 

  28. M.P. Seah, W.A.D. Dench: Quantitative electron spectroscopy of surfaces. A standard base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2 (1979)

    Google Scholar 

  29. J. Szajman, R.C.G. Leckey: An analytical expression for the calculation of electron mean free paths in solids. J. Electron Spectr. 23, 83 (1981)

    Google Scholar 

  30. J. Szajman, J. Liesegang, J.G. Jenkin, R.C.G. Leckey: Is there a universal mean-free path curve for electron inelastic scattering in solids ? J. Electron Spectr. 23, 97 (1981)

    Google Scholar 

  31. H.E. Bishop, J.C. Rivière: Estimates of the efficiencies of production and detection of electron-excited Auger emission. J. Appl. Phys. 40, 1740 (1969)

    ADS  Google Scholar 

  32. J. Kirschner: The role of backscattered electrons in scanning Auger microscopy. SEM 1976/I ( ITTRI, Chicago 1976 ) p. 215

    Google Scholar 

  33. J. Weihrauch: Nichtdispersive Röntgenmikroanalyse am Raster-Elektronenmikroskop. Beitr. elektr. mikr. Direktabb. Oberfl. 1, 121 (1968)

    Google Scholar 

  34. D.A. Gedcke: The Si(Li) x-ray energy spectrometer for x-ray microanalysis. In Quantitative Scanning Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 403

    Google Scholar 

  35. E. Fiori, D.E. Newbury: Artifacts observed in energy-dispersive x-ray spectrometry in the SEM. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 401

    Google Scholar 

  36. S.J.B. Reed, N.G. Ware: Escape peaks and internal fluorescence in x-ray spectra recorded with lithium-drifted silicon detectors. J. Phys. E 5, 582 (1972)

    ADS  Google Scholar 

  37. N.C. Barbi, A.O. Sandborg, J.C. Russ, C.E. Soderquist: Light element analysis on the SEM using windowless energy dispersive x-ray spectrometer. SEM 1974 ( ITTRI, Chicago 1974 ) p. 151

    Google Scholar 

  38. J.C. Russ, G.C. Baerwaldt, W.R. McMillan: Routine use of a second generation windowless detector for energy dispersive ultra-light element x-ray analysis. X-Ray Spectrometry 5, 212 (1976)

    Google Scholar 

  39. D.G. Rickerby: Barriers to energy dispersive spectrometry with low energy x-rays. Mikrochim. Acta (Suppl.) 13, 493 (1996)

    Google Scholar 

  40. P. Hovington, G. L’Espérance, E. Baril, M. Rigaud: Monitoring the performance of energy dispersive spectrometer detectors at low energy. Scanning 17, 136 (1995)

    Google Scholar 

  41. F. Eggert: Effektivität energiedispersiver Röntgenspektrometer im Energiebereich kleiner 1 keV. Beitr. elektr. mikr. Direktabb. Oberft. 29, 31 (1996)

    Google Scholar 

  42. M. Procop: Abschätzung der Dicke absorbierender Schichten eines EDXDetektorsystems mit Hilfe von Bremsstrahlungsspektren. Beitr. elektr. mikr. Direktabb. Oberft. 29, 47 (1996)

    Google Scholar 

  43. W.P. Rehbach: Vergleich von energiedispersiven Röntgenspektren im Energiebereich 1 keV, gemessen mit unterschiedlichen EDX-Detektoren. Beitr. elektr. mikr. Direktabb. Oberft. 29, 37 (1996)

    Google Scholar 

  44. M. Procop: fiber Probleme bei der EDX-Analyse im Energiebereich un- terhalb 1 keV. Beitr. elektr. mikr. Direktabb. Oberft. 27, 1 (1994)

    Google Scholar 

  45. T.A. Hall: Reduction of background due to backscattered electrons in energy-dispersive x-ray microanalysis. J. Microsc. 110, 103 (1977)

    Google Scholar 

  46. B. Neumann, L. Reimer, B. Wellmanns: A permant magnet system for electron deflection in front of an energy-dispersive x-ray spectrometer. Scanning 1, 130 (1978)

    Google Scholar 

  47. E. Lifshin, M.F. Ciccarelli: Present trends in x-ray analysis with the SEM. SEM 1973 ( ITTRI, Chicago 1973 ) p. 89

    Google Scholar 

  48. P.J. Statham, J.V.P. Long, G. White, K. Kandiah: Quantitative analysis with an energy-dispersive detector using a pulsed electron probe and active signal processing. X-ray Spectrometry 3, 153 (1974)

    Google Scholar 

  49. M.H. Peeters: An electron-beam blanker mounted on a SEM to improve the counting efficiency of an energy dispersive x-ray analyser, in EUREM 88, Inst. of Physics Conf. Ser. 93, Vol. 1 ( IoP, London 1988 ) p. 137

    Google Scholar 

  50. R. Schmidt, M. Feller-Kniepmeier: Investigation of system-induced background radiation using a 0–160 keV high-purity germanium detector. Ultramicroscopy 34, 229 (1990)

    Google Scholar 

  51. T.J. White, D.R. Cousens, G.J. Auchterlonie: Preliminary characterization of an intrinsic germanium detector on a 400 keV microscope. J. Microsc. 162, 379 (1991)

    Google Scholar 

  52. G. Clooth, C. Paggen, W.G. Burchard: Quantifizierung des Sauerstoffs mittels der energiedispersiven Röntgenanalyse. Beitr. elektr. mikr. Direktabb. Oberft. 27, 7 (1994)

    Google Scholar 

  53. J.I. Goldstein, R.E. Ganneman, R.E. Ogilvie: Diffusion in the Fe-Ni system at 1 atm and 40 kbar pressure. Trans. Met. Soc. AIME 233, 812 (1965)

    Google Scholar 

  54. T.O. Ziebold, R.E. Ogilvie: An empirical method for electron microanalysis. Anal. Chem. 36, 322 (1964)

    Google Scholar 

  55. A.E. Bence, A.L. Albee: Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geology 76, 382 (1968)

    ADS  Google Scholar 

  56. D. Laguitton, R. Rousseau, F. Claisse: Computed alpha coefficients for electron microprobe analysis. Anal. Chem. 47, 2174 (1975)

    Google Scholar 

  57. J.W. Colby: Quantitative microprobe analysis of thin insulating films. Adv. X-Ray Analysis 11, 287 (1968)

    Google Scholar 

  58. K.F.J. Heinrich, R.L. Myklebust, H. Yakowitz, S.D. Rasberry: A simple correction procedure for quantitative electron probe microanalysis. NBS Spec. Techn. Note 719 ( U.S. Dep. of Commerce, Washington, DC 1972 )

    Google Scholar 

  59. J. Hénoc, K.F.J. Heinrich, R.L. Myklebust: A rigorous correction procedure for quantitative electron probe microanalysis (COR 2). NBS Techn. Note 769 ( U.S. Dep. of Commerce, Washington D.C. 1973 )

    Google Scholar 

  60. H. Yakowitz, R.L. Myklebust, K.F.J. Heinrich: An on-line correction procedure for quantitative electron probe microanalysis. NBS Techn. Note 796 ( U.S. Dep. of Commerce, Washington, DC 1973 )

    Google Scholar 

  61. R.R. Warner, J.R. Coleman: A procedure for quantitative electron probe microanalysis of biological material. Micron 4, 61 (1973)

    Google Scholar 

  62. R.R. Warner, J.R. Coleman: A biological thin specimen microprobe quantitation method that calculates composition and px. Micron 6, 79 (1975)

    Google Scholar 

  63. R.B. Marinenko: Standards for electron probe microanalysis. In Electron Probe Quantitation, ed. by K.F.J. Heinrich, D.E. Newbury ( Plenum, New York 1991 ) p. 251

    Google Scholar 

  64. G. Love, V.D. Scott: Updating correction procedures in quantitative electron probe microanalysis. Scanning 4, 111 (1981)

    Google Scholar 

  65. D.L. Webster, H. Clark, W.W. Hansen: Effects of cathode-ray diffusion on intensities in x-ray spectra: Phys. Rev. 37, 115 (1931)

    Google Scholar 

  66. J. Philibert, R. Tixier: Some problems with quantitative electron probe microanalysis. In Quantitative Electron Probe Microanalysis, ed. by K.F.J. Heinrich, NBS Spec.Publ. 298 ( U.S. Dep. of Commerce, Washington, DC 1968 ) p. 13

    Google Scholar 

  67. M. Green, V.E. Cosslett: The efficiency of production of characteristic x-radiation in thick targets of pure elements. Proc. Phys. Soc. 78, 1206 (1961)

    ADS  Google Scholar 

  68. M. Green, V.E. Cosslett: Measurement of K, L and M shell x-ray production efficiencies. J. Phys. D 1, 425 (1968)

    ADS  Google Scholar 

  69. P. Duncumb, S.J.B. Reed: The calculation of stopping power and backscatter effects in electron probe microanalysis. In Quantitative Electron Probe Microanalysis, ed. by K.F.J. Heinrich, NBS Spec. Publ. 298 ( U.S. Dep. of Commerce, Washington, DC 1968 ) p. 133

    Google Scholar 

  70. G. Love, M.G.C. Cox, V.D. Scott: A simple Monte Carlo method for simulating electron-solid interactions and its application to electron probe microanalysis. J. Phys. D 10, 7 (1977)

    ADS  Google Scholar 

  71. V.D. Scott, G. Love: An EPMA correction method based upon quadrilateral 0(pz) profile. In Electron Probe Quantitation, ed. by K.F.J. Heinrich, D.E. Newbury ( Plenum, New York 1991 ) p. 19

    Google Scholar 

  72. J.L. Labar: Comparison of backscatter loss calculations in electron microanalysis. Scanning 8, 188 (1986)

    Google Scholar 

  73. H.J. August, R. Razka, J. Wernisch: Calculation and comparison of the backscattering factor R for characteristic x-ray emission. Scanning 10, 107 (1988)

    Google Scholar 

  74. R.L. Myklebust, D.E. Newbury: The R factor: The x-ray loss due to electron backscatter. In Electron Probe Quantitation, ed. by K.F.J. Heinrich, D.E. Newbury ( Plenum, New York 1991 ) p. 177

    Google Scholar 

  75. JG. Springer: The loss of x-ray intensity due to backscattering in micro-analyser targets. Microchim. Acta 1966, p. 587

    Google Scholar 

  76. J.C. Dérian: PhD thesis, CEA Rep. R 3052, Univ.Paris 1966

    Google Scholar 

  77. B. Lödding, L. Reimer: An experimental test of a ZAF correction program for tilted specimens and energy dispersive spectrometry. In 10 th Int’l Congr. on X-Ray Optics and Microanalysis. J. Physique 45, C2, 37 (1984)

    Google Scholar 

  78. R. Castaing, J. Descamps: Sur le bases physique de l’analyse ponctuelle par spectrographie X. J. Phys. Rad. 16, 304 (1955)

    Google Scholar 

  79. U. Schmitz, P.L. Ryder, W. Pitsch: An experimental method for determining the depth distribution of characteristic x-rays in electron microprobe specimens. In 5th Int’l.Conf. on X-Ray Optics and Microanalyis, ed. by G. Möllenstedt and K.H. Gaukler ( Springer, Berlin, Heidelberg 1969 ) p. 104

    Google Scholar 

  80. A.R. Büchner, W. Pitsch: A new correction for absorption and for atomic number in quantitative microprobe analysis of metals. Z. Metallkd. 62, 392 (1971)

    Google Scholar 

  81. P. Karduck, W. Rehbach: Experimental determination of the depth distribution of x-ray production 0(pz) for x-ray energies below 1 keV. Mikrochim. Acta (Suppl.) 11, 289 (1985)

    Google Scholar 

  82. W. Rehbach, P. Karduck: Measurement of 0(pz) depth distributions for low energy characteristic x-rays. In 11 th Int’l. Congr. in X-Ray Optics and Microanalysis, ed. by J.D. Brown and R.H. Packwood ( London, Ontario 1986 ) p. 244

    Google Scholar 

  83. A. Vignes, G. Dez: Distribution depth of the primary x-ray emission in anticathodes of titanium and lead. J. Phys. D 1, 1309 (1968)

    ADS  Google Scholar 

  84. J.D. Brown, L. Parobek: X-ray production as a function of depth for low electron energies. X-Ray Spectrometry 5, 36 (1976)

    Google Scholar 

  85. J.D. Brown, L. Parobek: The sandwich sample technique applied to the atomic number effect. In 6th Int’l. Conf. on X-Ray Optics and Microanalysis, ed. by G. Shinoda et al. ( Univ. of Tokyo Press, Tokyo 1972 ) p. 163

    Google Scholar 

  86. NI. Green: The target absorption correction in x-ray microanalysis In Proc. 3rd Int’l. Conf on X-Ray Optics and Microanalysis, ed. by H.H. Pattee et al. ( Academic, New York 1963 ) p. 361

    Google Scholar 

  87. B. Neumann, L. Reimer: Method for measuring the absorption correction f(x) with an energy dispersive x-ray detector. Scanning 1, 243 (1978)

    Google Scholar 

  88. J. Philibert: A method for calculating the absorption correction in electron probe microanalysis. In Proc 3rd. Int’l. Conf. on X-Ray Optics and Microanalysis, ed. by H.H. Pattee et al. ( Academic, New York 1963 ) p. 379

    Google Scholar 

  89. K.F.J. Heinrich: Present state of the classical theory of quantitative electron probe microanalysis. NBS Techn. Note 521 ( U.S. Dep. of Commerce, Washington, DC 1970 )

    Google Scholar 

  90. H.E. Bishop: The prospects for an improved absorption correction in electron probe microanalysis. J. Phys. D 7, 2009 (1974)

    Google Scholar 

  91. G. Love, V.D. Scott: Evaluation of a new correction procedure for quan- titativce electron probe microanalysis. J. Phys. D 11, 1369 (1978)

    ADS  Google Scholar 

  92. R.H. Packwood, J.D. Brown: A Gaussian expression to describe 0(z) curves for quantitative electron probe microanalysis. X-Ray Spectrometry 10, 138 (1981)

    Google Scholar 

  93. G.F. Bastin, H.J.M. Heijligers, F.J.J. van Loo: A further improvement in the Gaussian 0(pz) approach for matrix correction in quantitative electron probe microanalysis. Scanning 8, 45 (1986); see also Electron Probe Quantitation, ed. by K.F. J. Heinrich, and D.E. Newbury ( Plenum, New York 1991 ) p. 145

    Google Scholar 

  94. J.L. Pouchou, F. Pichoir: Quantitative analysis of homogeneous or stratified microvolumes applying the model PAP. In Electron Probe Quantitation ed. by K.F.J. Heinrich and D.E. Newbury (Plenum, New York 1991 ) p. 31

    Google Scholar 

  95. S.J.B. Reed: Characteristic fluorescence corrections in electron-probe microanalysis. Brit. J. Appl. Phys. 16, 913 (1967)

    ADS  Google Scholar 

  96. G. Springer: Die Berechnung von Korrekturen für die quantitative Elektronenstrahl-Mikroanalyse. Fortschr. Miner. 45, 103 (1967)

    Google Scholar 

  97. S.J.B. Reed: Electron Probe Microanalysis (Univ. Press, Cambridge, 1975 )

    Google Scholar 

  98. J. Hénoc: Fluorescence excited by the continuum. In Quantitative Electron Probe Microanalysis, ed. by K.F.J. Heinrich, NBS Spec. Publ. 298 ( U.S. Dep. of Commerce, Washington D.C., 1968 ) p. 197

    Google Scholar 

  99. G. Springer: The correction for continuum fluorescence in electron probe microanalysis. Neues Jahrbuch Miner. Abh. 106, 241 (1967)

    Google Scholar 

  100. G. Springer: Fluorescence by continuum radiation in multi-element targets. In 6th Int’l. Conf. on X-Ray Optics and Microanalysis, ed. by G. Shinoda et al. ( Univ. of Tokyo Press, Tokyo 1972 ) p. 141

    Google Scholar 

  101. K.F.J. Heinrich: Strategies of electron probe data reduction. In Electron Probe Quantitation, ed. by K.F.J. Heinrich, D.E. Newbury ( Plenum, New York 1991 ) p. 9

    Google Scholar 

  102. R. Packwood: A comprehensive theory of electron probe microanalysis. In Electron Probe Quantitation, ed. by K.F.J. Heinrich, D.E. Newbury ( Plenum, New York 1991 ) p. 83

    Google Scholar 

  103. Karduck, W. Rehbach: Progress in the measurement and calculation of the depth distribution of low-energy x-ray generation. In Microbeam Analysis 1990, ed. by D.E. Newbury ( San Francisco Press, San Francisco 1990 ) p. 277

    Google Scholar 

  104. L. Reimer: Monte Carlo simulation techniques for quantitative x-ray microanalysis. Mikrochim. Acta (Suppl.) 13, 1 (1996)

    Google Scholar 

  105. P.J. Statham: Measurement and use of peak-to-background ratios in x-ray analysis, Mikrochim. Acta (Supp1.8), 229 (1979)

    Google Scholar 

  106. J.L. Pouchou: Standardless x-ray analysis of bulk specimens. Mikrochim. Acta 114 /115, 33 (1994)

    Google Scholar 

  107. F. Eggert: Standardfreie Elektronenstrahl-Mikroanalyse. Beitr. elektr. mikr. Direktabb. Oberfl. 27, 15 (1994)

    Google Scholar 

  108. G.F. Bastin, H.J.M. Heijligers: Nonconductive specimens in the electron probe microanalyzer — a hitherto poorly discussed problem. In Electron Probe Quantitation, ed. by K.F. J. Heinrich, D.E. Newbury ( Plenum, New York 1991 ) p. 163

    Google Scholar 

  109. M. Green: The angular distribution of characteristic x-radiation and its origin within a solid target. Proc. Phys. Soc. 83, 435 (1964)

    ADS  Google Scholar 

  110. H.E. Bishop: The absorption and atomic number correction in electron-probe x-ray microanalysis. J. Phys. D 1, 673 (1968)

    ADS  Google Scholar 

  111. J.C. Russ: Microanalysis of thin sections, coatings and rough surfaces. SEM 1973 ( ITTRI, Chicago 1973 ) p. 113

    Google Scholar 

  112. G. Love, M.G. Cox, V.D. Scott: A versatile atomic number correction for electron-probe microanalysis. J. Phys. D 11, 7 (1978)

    ADS  Google Scholar 

  113. B. Lödding, L. Reimer: Energy dispersive x-ray microanalysis of tilted specimens using a modified ZAF correction. Scanning 1, 225 (1978)

    Google Scholar 

  114. H.J. Dudek, R. Borath: Preparation of a sharply defined boundary between two elements. Scanning 2, 39 (1979)

    Google Scholar 

  115. W.E. Sweeney, R.E. Seebold, L.S. Birks: Electron probe measurements of evaporated metal films. J. Appl. Phys. 31, 1061 (1960)

    ADS  Google Scholar 

  116. G.H. Cockett, C.D. Davies: Coating thickness measurement by electron probe microanalysis. Brit. J. Appl. Phys. 14, 813 (1963)

    ADS  Google Scholar 

  117. W. Reuter: The ionization function and its application to the electron probe analysis of thin films. In 6th Int’l. Conf. on X-Ray Optics and Microanalysis, ed. by G. Shinoda et al. ( Univ. of Tokyo Press, Tokyo 1972 ) p. 121

    Google Scholar 

  118. H. Yakowitz, D.E. Newbury: A simple analytical method for thin film analysis with massive pure element standards. SEM 1976/I ( ITTRI, Chicago 1976 ) p. 151

    Google Scholar 

  119. H.E. Bishop, D.M. Poole: A simple method of thin film analysis in the electron probe microanalyzer. J. Phys. D 6, 1142 (1973)

    ADS  Google Scholar 

  120. M.G.C. Cox, G. Love, V.D. Scott: A characteristic fluorescence correction for electron-probe microanalysis of thin coatings. J. Phys. D 12, 1441 (1979)

    ADS  Google Scholar 

  121. L. Reimer: Transmission Electron Microscopy. Physics of Image Formation and Microanalysis, Springer Ser. Opt. Sci., Vol. 36, 4th edn. ( Springer, Berlin, Heidelberg 1997 )

    Google Scholar 

  122. P. Willich, R. Bethke: Practical aspects and applications of EPMA at low electron energies. Mikrochim. Acta (Suppl.) 13, 631 (1996)

    Google Scholar 

  123. G. Cliff, G.W. Lorimer: The quantitative analysis of thin specimens. J. Microsc. 103, 203 (1975)

    Google Scholar 

  124. J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: Quantitative x-ray analysis in the electron microscope. SEM 1977/I ITTRI, Chicago 1977 ) p. 315

    Google Scholar 

  125. T.P. Schreiber, A.M. Wims: A quantitative x-ray microanalysis thin film method using K-, L- and M-lines. Ultramicroscopy 6, 323 (1981)

    Google Scholar 

  126. H.J. Hoffmann, J.H. Weihrauch, H. Fechting: Eine empirische Methode zur quantitativen chemischen Analyse von Mikroteilchen mit der Mikrosonde. In 5th Int’l. Conf. on X-Ray Optics and Microanalyis, ed. by G. Möllenstedt and K.H. Gaukler ( Springer, Berlin, Heidelberg 1969 ) p. 166

    Google Scholar 

  127. J.T. Armstrong, P.R. Buseck: Quantitative chemical analysis of individual microparticles using the electron microprobe. Anal. Chem. 47, 2178 (1975)

    Google Scholar 

  128. N.C. Barbi, M.A. Giles, D.P. Skinner: Estimating elemental concentrations in small particles using x-ray analysis in the electron microscope. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 193

    Google Scholar 

  129. J.T. Armstrong: Methods of quantitative analysis of individual microparticles with electron beam instruments. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 455

    Google Scholar 

  130. K.F.J. Heinrich: Characterization of particles. NBS Spec.Publ. 533 ( Nat. Bur. of Standards, Washington, DC 1980 )

    Google Scholar 

  131. R.L. Myklebust, D.E. Newbury, K.F.J. Heinrich, J.A. Small, C.E. Fiori: Monte Carlo electron trajectory simulation — an aid for particle analysis. In Proc. 13th Ann. Conf. Microbeam Anal. Soc. (Ann Arbor 1978 ) p. 61A

    Google Scholar 

  132. P.J. Statham, J.B. Pawley: A new method for particle x-ray microanalysis based on peak-to-background measurements. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 469

    Google Scholar 

  133. J.A. Small, K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust: Progress in the development of the peak-to-background method for the quantitative analysis of single particles with the electron probe. SEM 1979/II ( SEM Inc., AMF O’Hare, IL 1979 ) p. 807

    Google Scholar 

  134. P. Wieser, R. Wurster: Some remarks about quantitative characterization of small particles by the electron microprobe. Scanning 2, 29 (1979)

    Google Scholar 

  135. A.J. Morgan, T.W. Davies, D.A. Erasmus: Specimen preparation. In Electron Probe Microanalysis in Biology, ed. by D.A. Erasmus ( Chapman and Hall, London 1978 ) p. 94

    Google Scholar 

  136. H. Shuman, A.V. Somlyo, A.P. Somlyo: Quantitative electron probe microanalysis of biological thin sections: methods and validity. Ultramicroscopy 1, 317 (1976)

    Google Scholar 

  137. T.A. Hall: Problems of the continuum-normalization method for the quantitative analysis of sections of soft tissue. In Micro beam Analysis in Biology, ed. by C. Lechéne, R.R. Warner ( Academic, New York 1979 ) p. 185

    Google Scholar 

  138. A. Warley: Standards for the application of x-ray microanalysis to biological specimens. J. Microsc. 157, 135 (1990)

    Google Scholar 

  139. A. Patak, A. Wright, A.T. Marshall: Evaluation of several common standards for the x-ray microanalysis of thin biological specimens. J. Microsc. 170, 265 (1993)

    Google Scholar 

  140. G.M. Roomans: Standards for x-ray microanalysis of biological specimens. SEM 1979/II ( SEM Inc., AMF O’Hare, IL 1979 ) p. 649

    Google Scholar 

  141. M.J. Ingram, F.D. Ingram: Electron microprobe calibration for measurements of intracellular water. SEM 1983/III ( SEM Inc., AMF O’Hare, IL 1983 ) p. 1249

    Google Scholar 

  142. N. Roos. T. Barnard: Aminoplastic standards for quantitative x-ray microanalysis of thin sections of plastic-embedded biological material. Ultra-microscopy 15, 277 (1984)

    Google Scholar 

  143. A.J. Morgan, C. Winters: Practical notes on the production of thin aminoplast standards for quantitative x-ray microanalysis. Micron Microsc. Acta 20, 209 (1989)

    Google Scholar 

  144. W.C. de Bruin, M.I. Cleton-Soeteman: Application of Chelex standard beads in integrated morphometrical and x-ray microanalysis. SEM 1985/II ( SEM Inc., AMF O’Hare, IL 1985 ) p. 715

    Google Scholar 

  145. A. Dörge, R. Rick, K. Gehring, K. Thuraus: Preparation of frozen-dried cryosections for quantitative x-ray microanalysis of electrolytes in biological soft tissue. Pflügers Arch. 373, 85 (1978)

    Google Scholar 

  146. T. von Zglinicki, M. Bimmler, W. Krause: Estimation of organelle water fractions from frozen-dried cryosections. J. Microsc. 146, 67 (1987)

    Google Scholar 

  147. K.E. Tvedt, G. Kopstad, J. Halgunset, O.A. Haugen: Rapid freezing of small biopsies and standard for cryosectioning and x-ray microanalysis. Am. J. Clin. Pathol. 92, 51 (1989)

    Google Scholar 

  148. A. Boekestein, F. Thiel, A.L.H. Stols, E. Bouw, A.M. Stadhouders: Surface roughness and the use of peak to background ratio in the x-ray microanalysis of bio-organic bulk specimens. J. Microsc. 134, 327 (1984)

    Google Scholar 

  149. I. Zs-Nagy, C. Pieri, C. Giuli, C. Bertoni-Freddari, V. Zs.-Nagy: Energy-dispersive x-ray microanalysis of the electrolytes in biological bulk specimens. J. Ultrastruct. Res. 58, 22 (1977)

    Google Scholar 

  150. T.A. Hall: Quantitative electron probe x-ray microanalysis in biology. Scanning Microscopy 3, 461 (1989)

    Google Scholar 

  151. G.M. Roomans: The Hall method in the quantitative x-ray microanalysis of biological specimens: a review. Scanning Microscopy 4, 1055 (1990)

    Google Scholar 

  152. G.M. Roomans: Quantitative electron probe x-ray microanalysis of biological bulk specimens. SEM 1981/II ( SEM Inc., AMF O’Hare, IL 1981 ) p. 345

    Google Scholar 

  153. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis ( Plenum, New York 1981 )

    Google Scholar 

  154. C.E. Fiori, R.L. Myklebust, K.F.J. Heinrich, H. Yakowitz: Prediction of continuum intensity in energy-dispersive x-ray microanalysis. Anal. Chem. 48, 172 (1976)

    Google Scholar 

  155. C.E. Fiori, R.L. Myklebust, K.F.J. Heinrich: A method for resolving overlapping energy dispersive peaks of an x-ray spectrometer. In Conf. Microbeam Anal. Soc. (Ann Arbor 1976 ) p. 12A

    Google Scholar 

  156. P. Ryder, S. Baumgartl: Die Eignung eines energiedispersiven Röntgenspektrometers für die Elektronenstrahl-Mikroanalyse. Arch. Eisenhüttenwesen 42, 635 (1971)

    Google Scholar 

  157. R.W. Gould, J.T. Healey: Secondary fluorescent excitation in the SEM: improved sensitivity of energy dispersive analysis. Rev. Sci. Instr. 46, 1427 (1975)

    ADS  Google Scholar 

  158. L.M. Middleman, J.D. Geller: Trace element analysis using x-ray excitation with an energy dispersive spectrometer on a SEM. SEM 1976/I ( ITTRI, Chicago 1976 ) p. 171

    Google Scholar 

  159. B. Linnemann, L. Reimer: Comparison of x-ray elemental analysis by elec- tron excitation and x-ray fluorescence. Scanning 1, 109 (1978)

    Google Scholar 

  160. J.B. Warren, H.W. Kraner: Optimized stage design for x-ray fluorescence analysis in the SEM. SEM 1982/IV ( SEM Inc., AMF O’Hare, IL 1982 ) p. 1373

    Google Scholar 

  161. R. Eckert: X-ray fluorescence analysis in the SEM with a massive anode. SEM 1983/IV ( SEM Inc., AMF O’Hare, IL 1983 ) p. 1535

    Google Scholar 

  162. E. Valamontes, A. G. Nassiopoulos: Comparison of back-foil scanning x-ray microfluorescence and electron probe microanalysis for elemental characterisation of thin coatings. Mikrochim. Acta, Suppl. 13, 597 (1996)

    Google Scholar 

  163. K. Siegbahn et al. ESCA: Atomic, Molecular and Solid State Structure studied by Means of Electron Spectroscopy ( Almqvist and Wiksells, Uppsala 1967 )

    Google Scholar 

  164. C.C. Chang: Auger electron spectroscopy. In Characterization of Solid Surfaces, ed. by P.F. Kane and G.B. Larrabee ( Plenum, New York 1974 ) p. 509

    Google Scholar 

  165. M.B. Chamberlain: Instrumentation and methods for scanning Auger microscopy. SEM 1982/III ( SEM Inc., AMF O’Hare, IL 1982 ) p. 937

    Google Scholar 

  166. L.L. Levenson: Fundamentals of Auger electron spectroscopy. SEM 1983/IV ( SEM Inc., AMF O’Hare, IL 1983 ) p. 1643

    Google Scholar 

  167. A. Benninghoven: Surface investigation of solids by the statical method of secondary ion mass spectroscopy (SIMS). Surf. Sci. 35, 427 (1973)

    ADS  Google Scholar 

  168. P.W. Palmberg, W.M. Riggs: Unique instrument for multiple surface characterization by ESCA, scanning Auger, UPS and SIMS. J. Vac. Sci. Techn. 15, 786 (1978)

    ADS  Google Scholar 

  169. N.C. MacDonald: Auger electron spectroscopy for SEM. SEM 1971 ( IT-TRI, Chicago 1971 ) p. 89

    Google Scholar 

  170. E.K. Brandis: High spatial resolution Auger electron spectroscopy in an ordinary diffusion pumped SEM. SEM 1975 ( ITTRI, Chicago 1975 ) p. 141

    Google Scholar 

  171. R. Holm, B. Reinfandt: Auger microanalysis in a conventional SEM. Scanning 1, 42 (1978)

    Google Scholar 

  172. J. Cazaux: X-ray probe microanalyser and scanning x-ray microscopies. Ultramicroscopy 12, 321 (1984)

    Google Scholar 

  173. C.T. Hovland: Scanning ESCA: a new dimension for electron spectroscopy. Appl. Phys. Lett. 30, 274 (1977)

    ADS  Google Scholar 

  174. R. Plattner, D. Schünemann: Das energiedispersive Röntgenspektrometer — gegenwärtiger Leistungsstand and zukünftige Entwicklung. Beitr. elektr. mikr. Direktabb. Oberfl. 4 /2, 77 (1971)

    Google Scholar 

  175. J.B. Pawley, T. Hayes, R.H. Falk: Simultaneous three-element x-ray mapping using color TV. SEM 1976/I ( ITTRI, Chicago 1976 ) p. 187

    Google Scholar 

  176. K.F.J. Heinrich: Elemental mapping in the microscope domain. SEM 1977/I ( ITTRI, Chicago 1977 ) p. 605

    Google Scholar 

  177. a simple method of forming a non-projective x-ray image in the SEM using an energy dispersive detector and its application to biological specimens. SEM 1980/II ( SEM Inc., AMF O’Hare, IL 1980 ) p. 285

    Google Scholar 

  178. P. Bernsen, L. Reimer: Total rate imaging with x-ray in a SEM. J. Physique 45, C2–297 (1984)

    Google Scholar 

  179. B. Neumann, L. Reimer: Versuche zur Röntgenprojektionsmikroskopie im Rasterlektronenmikroskop. Beitr. elektr. mikr. Direktabb. Oberft. 9, 147 (1976)

    Google Scholar 

  180. V.E. Cosslett, W.C. Nixon: X-Ray Microscopy (Cambridge Univ. Press, Cambridge 1960 )

    Google Scholar 

  181. M. von Ardenne: Zur Leistungsfähigkeit des Elektronen-Schattenmikroskops und über ein Röntgenstrahl-Schattenmikroskop. Naturwiss. 27, 485 (1939)

    ADS  Google Scholar 

  182. V.E. Cosslett, W.C. Nixon: The x-ray shadow microscope. J. Appl. Phys. 24, 616 (1953)

    ADS  Google Scholar 

  183. S.P. Ong: Microprojection with X-Rays. Martinus Nijhoff, The Hague 1959

    Google Scholar 

  184. H.R.F. Horne, H.U. Waltinger: Röntgenmikrographie und Röntgenabsorptionsanalyse im REM. Beitr. elektr. mikr. Direktabb. Oberft. 6, 163 (1974)

    Google Scholar 

  185. H.R.F. Horne, H.U. Waltinger: How to obtain and use x-ray projection microscopy in the SEM. Scanning 1, 100 (1978)

    Google Scholar 

  186. G. Fuhrmann, H. Halling, R. Möller, J. Vell, Z. Shuan-Ren, E. Wallura: Mikrotomographiesystem als Zusatz für Rasterelektronenmikroskope. Beitr. elektr. mikr. Direktabb. Oberft. 25, 95 (1992)

    Google Scholar 

  187. ] H.R.F. Horne: X-ray reflection-topography in the SEM. Scanning 6, 69 (1984)

    Google Scholar 

  188. W. Brünger: Scanning x-ray projection microscopy using an energy-dispersive spectrometer. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 423

    Google Scholar 

  189. R. Feder, E. Spiller, J. Topalian, A.N. Broers, W. Gudat, B. Panessa: High resolution soft x-ray microscopy: Science 197, 259 (1977)

    Google Scholar 

  190. B.J. Panessa, J.B. Warren, P. Hoffman, R. Feder: Imaging unstained proteoglycan aggregates by soft x-ray contact microscopy. Ultramicroscopy 5, 267 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1998). Elemental Analysis and Imaging with X-Rays. In: Scanning Electron Microscopy. Springer Series in Optical Sciences, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38967-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38967-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08372-3

  • Online ISBN: 978-3-540-38967-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics