Skip to main content

Collisionless Multiple Photon Excitations in SF6: Thermal or not?

  • Conference paper
Laser Spectroscopy IV

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 21))

  • 538 Accesses

Abstract

Recently, BLACK, KOLODNER, SCHULTZ, YABLONOVITCH, and BLOEMBERGEN (BKSYB) [1] made the claim that IR laser excitation in polyatomic molecules leads to a thermal population distribution. The far reaching implications of this result for laser induced chemistry stimulated several doubting researchers to perform experiments to either prove or disprove this result [2]. The experiments so far are not conclusive. One might then hope that existing theory could resolve this question, but to date theory remains incomplete, and divided into two regimes: detailed low level coherent excitation including first order rotation-vibration structure [3.a] and high level quasi-continuum (qc) absorption typically described by incoherent rate equations [3.b]. Joining the υ3 low level excitation with the higher lying qc in a smooth continuous manner has been the major stumbling block in forming a complete theoretical model of multiple photon excitation (MPE) and dissociation (MPD). In fact the lack of a complete model has forced researchers to speculate on the effects of the so called υ3 ladder “bottleneck” [1]. Therefore, the problem of whether laser excitation in polyatomic molecules leads to a thermal population distribution has remained unresolved.

Work performed under the auspices of the U.S.D.O.E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. G. Black, P. Kolodner, M. J. Schultz, E. Yablonovitch, and N. Bloembergen, Phys. Rev. A 19, 704 (1979) and references therein.

    Article  ADS  Google Scholar 

  2. E. R. Grant, P. A. Schulz, Aa. S. Sudbo, and Y. T. Lee, Phys. Rev. Lett. 40, 115 (1978);

    Article  ADS  Google Scholar 

  3. M. Rothschild, W. S. Tsay, and D. O. Ham, Opt. Commun. 24, 327 (1978);

    Article  ADS  Google Scholar 

  4. M. M. Arvedson and D. A. Kohl, preprint; R. Dupperrex and H. van den Bergh, preprint.

    Google Scholar 

  5. J. R. Ackerhalt and H. W. Galbraith, J. Chem. Phys. 69, 1200 (1978);

    Article  ADS  Google Scholar 

  6. H. W. Galbraith and J. R. Ackerhalt, Optics Lett. 3, 109 (1978);

    Article  ADS  Google Scholar 

  7. D. M. Larsen, Optics Commun, 19, 404 (11 76);

    Google Scholar 

  8. C. D. Cantrell and K. Fox, Optics Lett. 2, 151 (1978);

    Article  ADS  Google Scholar 

  9. H. W. Galbraith and J. R. Ackerhalt, Optics Lett. 3, 152 (1978);

    Article  ADS  Google Scholar 

  10. H. W. Galbraith, Optics Lett. 3, 154 (1978).

    Article  ADS  Google Scholar 

  11. J. L. lyman, J. Chem. Phys. 67, 1868 (1977);

    Article  ADS  Google Scholar 

  12. E. R. Grant, P. A. Schulz, A. S. Sudbo and Y. T. Lee; M. Tamir and R. D. Levine, Chem. Phys. Lett. 46, 208 (1977);

    Article  Google Scholar 

  13. S. Mukamel and J. Jortner, Chem. Phys. Lett. 40, 150 (1971)

    Article  ADS  Google Scholar 

  14. D. P. Hodgkinson and J. S. Briggs, J. Phys. B: Atom. Molec. Phys. 10, 2583 (1977);

    Article  ADS  Google Scholar 

  15. J. Stone, M. F. Goodman, and D. A. Dows, J. Chem. Phys 65, 5062 (1976).

    Article  ADS  Google Scholar 

  16. J. R. Ackerhalt and H. W. Galbraith, submitted to Optics Lett.; H. W. Galbraith and J. R. Ackerhalt, in preparation.

    Google Scholar 

  17. M. Goodman, J. Stone, J. Horsley, D. Dows and E. Thiele are simultaneously working on a complete model of MPE and MPD. For a description of this work see J. Stone and M. F. Goodman to be published J. Chem. Phys. and J. C. Stephenson, D. King, M. F. Goodman and J. Stone, J. Chem. Phys. in press.

    Google Scholar 

  18. A. Pine, private communication.

    Google Scholar 

  19. R. S. McDowell, J. P. Aldridge and R. Holland, J. Phys. Chem. 80, 1203 (1976).

    Article  Google Scholar 

  20. Rotation-Vibration of Polyatomic Molecules, G. Amat, H. H. Nielsen, G. Tarrago (Marcel Dekker Inc., New York, 1971).

    Google Scholar 

  21. J. Jortner, Adv. Laser Spect. 113, 88 (1977);

    Article  Google Scholar 

  22. B. Carmeli and A. Nitzan, Chem. Phys. Lett. (to be published).

    Google Scholar 

  23. G. Z. Whitten and B. S. Rabinovitch, J. Chem. Phys. 38, 2466 (1963).

    Article  ADS  Google Scholar 

  24. J. R. Ackerhalt and J. H. Eberly, Phys. Rev. A 14, 1705 (1976);

    Article  ADS  Google Scholar 

  25. J. R. Ackerhalt and B. W. Shore, Phys. Rev. A. 16, 277 (1977).

    Article  ADS  Google Scholar 

  26. P. J. Robinson and K. A. Holbrook, Unimolecular Reactions ( Wiley, New York, 1972 );

    Google Scholar 

  27. M. J. Shultz and E. Yablonovitch, J. Chem. Phys. 68, 3007 (1978) compare QRRK with RRKM finding only small differences.

    Google Scholar 

  28. T. Kiang, R. C. Estler and R. N. Zare (submitted to J. Chem. Phys.);

    Google Scholar 

  29. J. F. Bott and T. A. Jacobs, J. Chem. Phys. 50, 3850 (1969);

    Article  ADS  Google Scholar 

  30. S. W. Benson, Chem. Revs. 78, 23 (1978);

    Article  Google Scholar 

  31. J. L. Lyman, J. Chem. Phys. 67, 1868 (1977).

    Article  ADS  Google Scholar 

  32. T. F. Deutsch, Optics Lett. 1, 25 (1977).

    Article  ADS  Google Scholar 

  33. J. Lyman, R. Anderson, R. Fisher and B. Feldman, Optics Lett. 3, 238 (1978).

    Article  ADS  Google Scholar 

  34. F. Brunner and D. Proch, J. Chem. Phys. 68, 4936 (1978).

    Article  ADS  Google Scholar 

  35. This is consistent with one of the interpretations of BKSYB [1] of their data.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ackerhalt, J.R., Galbraith, H.W. (1979). Collisionless Multiple Photon Excitations in SF6: Thermal or not?. In: Walther, H., Rothe, K.W. (eds) Laser Spectroscopy IV. Springer Series in Optical Sciences, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38950-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38950-7_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13495-5

  • Online ISBN: 978-3-540-38950-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics