Skip to main content

Quantum-Well Devices

  • Chapter
Integrated Optics

Part of the book series: Advanced Texts in Physics ((ADTP))

  • 1204 Accesses

Abstract

In all of the devices discussed in previous chapters the dimensions of device structures were large compared to the wavelength of electrons in the device. When the dimensions of the structure are reduced to the point at which they are approaching the same order of magnitude as the electron wavelength some unique properties are observed. This is the case with a class of devices that have come to be known as “quantum well” devices, which feature very thin epitaxial layers of semiconductor material. This chapter will introduce the basic concepts of quantum wells and will describe some of the novel kinds of devices that can be made by using them. Improved lasers, photodiodes, modulators and switches can all be made by employing quantum well structures. Quantum well devices can be monolithically integrated with other optical and electronic devices to produce optical integrated circuits and opto-electronic integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e.g., K. Seeger: Semiconductor Physics, 5th edn., Springer Ser. Solid-State Sci., Vol. 40 ( Springer, Berlin, Heidelberg 1991 )

    Google Scholar 

  2. R. Dingle: Proc. 13th Int’l Conf on Physics of Semiconductors, ed. by F.G. Fumi ( North-Holland, Amsterdam 1976 )

    Google Scholar 

  3. A. Yariv: Quantum Electronics 3rd edn. (Wiley York, New York 1988) pp. 267-.268

    Google Scholar 

  4. A. Yariv: Quantum Electronics, 3rd edn. ( Wiley York, New York 1988 ) p. 270

    Google Scholar 

  5. A. Yariv: Quantum Electronics, 3rd edn. ( Wiley York, New York 1988 ) p. 272

    Google Scholar 

  6. A. Larsson, P. Andrekson, B. Jonsson, C. Lindstrom: IEEE J QE-25, 2013 (1989)

    Google Scholar 

  7. J. Feldmann, G. Peter, E.O. Göbel, K. Leo, H. Polland, K. Ploog, K. Fujiware, T. Nakayama: Appl. Phys. Lett. 54, 226 (1987)

    Article  ADS  Google Scholar 

  8. W.T. Tsang: Appl. Phys. Lett. 40, 217 (1982)

    Article  ADS  Google Scholar 

  9. L.M. Walpita: J. Opt. Soc. Am. A 2, 592 (1985)

    Google Scholar 

  10. P.L. Derry, A. Yariv, K.Y. Lau, N. Bar-Chaim, K. Lee, J. Rosenberg: Appl. Phys. Lett. 50, 1773 (1987)

    Article  ADS  Google Scholar 

  11. W.J. Choi, P.D. Dapkus: Self-defined oxide-current-aperture buried-heterostructure ridge waveguide InGaAs single-quantum-well diode laser. IEEE Photonics Tech. Lett. 11, 773 (1999)

    Article  ADS  Google Scholar 

  12. W.T. Tsang: Appl. Phys. Lett. 39, 786 (1981)

    Article  ADS  Google Scholar 

  13. R. Chin, N. Hollonyak Jr., B. Vojak, K. Hess, R. Dupuis, P. Dapkus: Appl. Phys. Lett. 36, 19 (1980)

    Article  ADS  Google Scholar 

  14. Z.Y. Yu, V. Kreismanis, C.L. Tung: Appl. Phys. Lett. 44, 136 (1984)

    Article  ADS  Google Scholar 

  15. Y. Sasai, J. Ohya, M. Ogura, T. Kajiwara: Electron. Lett. 23, 232 (1987)

    Article  Google Scholar 

  16. Y. Sasai, N. Huse, M. Ogura, T. Kajiwara: J. Appl. Phys. 59, 28 (1986)

    Article  ADS  Google Scholar 

  17. Y. Sasai, M. Ogura, T. Kajiwara: J. Cryst. Growth 78, 461 (1986)

    Article  ADS  Google Scholar 

  18. Y. Arakawa, A. Yariv: IEEE J. QE-21, 1666 (1985)

    Google Scholar 

  19. M. Okai, T. Tsuchiya, A. Takai, N. Chinone: IEEE Photon. Tech. Lett. 4, 526 (1992)

    Article  ADS  Google Scholar 

  20. J.J. Coleman: Strained-layer InGaAs quantum well heterostructure lasers. IEEE J. Selected Topics Quantum Electron. 6, 1008 (2000)

    Article  Google Scholar 

  21. A. Cavicchii, O. Lang, D. Gershoni, A. Sergent, J. Vandenberg, S.N.G. Chu, M.B. Panish: Appl. Phys. Lett. 54, 739 (1989)

    Article  ADS  Google Scholar 

  22. P.J.A. Thijs, T. van Dongen, B.H. Verbeek: OFC’90, San Francisco, Paper WJ2

    Google Scholar 

  23. J.J. Coleman: OFC’90, San Francisco, Paper WJ1

    Google Scholar 

  24. See, for example, Z. Alferov: Double heterostructure lasers: early days and future perspectives. IEEE J. Selected Topics Quantum Elect. 6, 832 (2000)

    Google Scholar 

  25. Y. Arakawa, K. Vahala, A. Yariv: Appl. Phys. Lett. 45, 950 (1984)

    Article  ADS  Google Scholar 

  26. H. Temkin, G. Dolan, M.B. Panish, S.N.G. Chu: Appl. Phys. Lett. 50, 413 (1987)

    Article  ADS  Google Scholar 

  27. J. Cibert, P.M. Petroff, G.J. Dolan, C.J. Pearton, A.C. Gossard, J.H. English: Appl. Phys. Lett. 49, 1275 (1986)

    Article  ADS  Google Scholar 

  28. H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, H. Ishikawa: Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer. IEEE J. Selected Topics Quantum Elect. 3, 188 (1997)

    Article  Google Scholar 

  29. G. Park, D.L. Huffaker, Z. Zou, O.B. Shchekin, D.G. Deppe: Temperature dependence of lasing characteristics for long-wavelength (1.3-µm) GaAs-based quantum-dot lasers. IEEE Photonics Tech. Lett. 11, 301 (1999)

    Article  ADS  Google Scholar 

  30. W. Tsang, M. Wu, Y. Chen, F. Chou, R. Logan, S. Chu, A. Sergant, R Magill, K. Reichmann, C. Burrus: IEEE J. QE-30, 1370 (1994)

    Google Scholar 

  31. D.A.B. Miller, D.S. Chemia, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, L.A. Burrus: Phys. Rev. Lett. 53, 2173 (1984)

    Article  ADS  Google Scholar 

  32. D.S. Chemia, T.C. Damen, D.A.B. Miller, A.C. Gossard, W. Wiegmann: Appl. Phys. Lett. 42, 864 (1983)

    Article  ADS  Google Scholar 

  33. T.H. Wood, C.A. Burrus, D.A.B. Miller, D.S. Chemia, T.C. Damen, A.C. Gossard, W. Wiegemann: IEEE J. QE-21, 117 (1985)

    Google Scholar 

  34. D.A.B. Miler, D.S. Chemia, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus: Phys. Rev. B 32, 1043 (1985)

    Article  ADS  Google Scholar 

  35. T.H. Wood: IEEE J. LT-6, 743 (1988)

    Google Scholar 

  36. P.J. Stevens, G. Parry: IEEE J. LT-7, 1101 (1989)

    Google Scholar 

  37. T.H. Wood, C.A. Burrus, R.S. Tucker, J.S. Weiner, D.A.B. Miller, D.S. Chemia, T.C. Damen, A.C. Gossard, Wiegmann: Electron. Lett. 21, 693 (1985)

    Google Scholar 

  38. T.H. Wood, R.W. Tkach, A.R. Chraplyvy: Appl. Phys. Lett. 50, 798 (1987)

    Article  ADS  Google Scholar 

  39. T.H. Wood: Appl. Phys. Lett. 48, 1413 (1986)

    Article  ADS  Google Scholar 

  40. K. Wakita, K. Sato, I. Kotaka. M. Yamamoto, T. Kataoka: Electron. Lett. 30, 302 (1994)

    Article  Google Scholar 

  41. P.S. Cho, D. Mahgerefteh, J. Coldhar: All-optical 2R regeneration and wavelength conversion at 20 Gb/s using an electroabsorption modulator. IEEE Photonics Tech. Lett. 11, 1662 (1999)

    Article  ADS  Google Scholar 

  42. K. Wakita, I. Kotaka: Microwave and Opt. Tech. Lett. 7, 120 (1994)

    Article  Google Scholar 

  43. T. Kuri, K. Kitayama, A. Stohr, Y. Ogawa: Fiber-optic millimeter-wave downlink system using 60 GHz-band external modulation. IEEE J. Lightwave Tech. 17, 799 (1999)

    Article  ADS  Google Scholar 

  44. See, e.g., J.I. Pankove: Optical Processes in Semiconductors ( Prentice-Hall, Englewood Cliffs, NJ 1971 ) pp. 89–90

    Google Scholar 

  45. T. Hiroshima: Appl. Phys. Lett. 50, 968 (1987)

    Article  ADS  Google Scholar 

  46. H. Nagai, M. Yamanishi, Y. Kam, I. Suemune: Electron. Lett. 22, 888 (1986)

    Article  ADS  Google Scholar 

  47. T.H. Wood, R.W. Tkach, A.R. Chraplyvy: Appl. Phys. Lett. 50, 798 (1987)

    Article  ADS  Google Scholar 

  48. I.D. Hennings, J.V. Collins: Electron. Lett. 19, 927 (1983)

    Article  Google Scholar 

  49. J.S. Weiner, D.A.B. Miller, D.S. Chemia: Appl. Phys. Lett. 50, 842 (1987)

    Article  ADS  Google Scholar 

  50. P. Li Kam Wa, J.E. Sitch, N.J. Mason, J.S. Roberts, P.N. Robson: Electron. Lett. 21, 26 (1985)

    Article  ADS  Google Scholar 

  51. A. Ajisawa, M. Fujiware, J. Shimizu, M. Sugimoto, M. Uchida, Y. Ohta: Electron. Lett. 23, 1121 (1987)

    Article  Google Scholar 

  52. T.H. Wood, J.Z. Pastalan, C.A. Burrus, B.I. Miller, J.L. de Miguel, U. Koren, M. Young: OSA/IEEE Conf. on Integrated Photonics Research, Hilton Head, SC (1990) Paper TuG4

    Google Scholar 

  53. C. Coriasso, D. Campi, L. Faustini, A. Stano, C. Cacciatore: Optically controlled contradirectional coupler. IEEE J Quantum Electron. 35, 298 (1999)

    Article  ADS  Google Scholar 

  54. F. Capasso, K. Mohammed, A.Y. Cho, R. Hull, L. Hutchinson: Appl. Phys. Lett. 47, 420 (1995)

    Article  ADS  Google Scholar 

  55. F. Capasso, K. Mohammed, A.Y. Cho, R. Hull, L. Hutchinson: Phys. Rev. Lett. 55, 1152 (1985)

    Article  ADS  Google Scholar 

  56. K. Mohammed, F. Capasso, J. Allam, A.Y. Cho, L. Hutchinson: Appl. Phys. Lett. 47, 597 (1985)

    Article  ADS  Google Scholar 

  57. F. Capasso: OFC/IGWO’86m Atlanta, GA, Paper WCC1

    Google Scholar 

  58. I. Yun, H.M. Menkarl, Y. Wang, I.H. Oguzman, J. Kolnik, K.F. Brennan, G.S. May, C.J. Summers, B.K. Wagner: Effect of doping on the reliability of GaAs multiple quantum well avalanche photodiodes IEEE Transactions on Electron Devices 44, 535 (1997)

    Google Scholar 

  59. A. Salokalve, M. Toivonett, M. Hovinen: Multiplication noise in GaAs/AlGaAs multi-quantum well avalanche photodiodes with different well widths. Electronics Lett. 28, 416 (1992)

    Article  Google Scholar 

  60. I. Yun, G.S. May: Parametric manufacturing yield modeling of GaAs/A1GaAs multiple quantum well avalanche photodiodes. IEE Transactions on Semiconductor Manufacturing 12, 238 (1999)

    Article  Google Scholar 

  61. For a review of SEED devices see, e.g., D.A.B. Miller: Optics and Photon. News 1, 7 (April 1990)

    Google Scholar 

  62. M. Cao, H. Li, A. Jun, F. Luo, X. Jun, L. Nu, W. Gao: Optics and Laser Tech. 26, 271 (1994)

    Article  ADS  Google Scholar 

  63. A.L. Lentine, H.S. Hinton, D.A.B. Miller, J.E. Henry, J.E. Cunningham, L.M.F. Chirovsky: IEEE J. QE-25, 1928 (1989)

    Google Scholar 

  64. L.M.F. Chirovsky, L.A. D’Asaro, R.F. Kopf, J.M. Kuo, A.L. Lentine, F.B. McCormick, R.A. Novotny, G.D. Boyd: OSA Annual Meeting, Orlando, FL (1989) Paper PD28

    Google Scholar 

  65. H.D. Chen, K. Liang, Q.M. Zeng, X.J. Li, Z.B. Chen, Y. Du, R.H. Wu: Flip-chip bonded hybrid CMOS/SEED optoelectronic smart pixels. IEE Proceedings, Optoelectronics 147, 2 (2000)

    Article  Google Scholar 

  66. M. Moran, C.J. Rees, J. Woodhead: Operating characteristics of GaAs-InGaAs self- biased piezoelectric S-SEEDs: IEE Proceedings, Optoelectronics 146, 31 (1999)

    Article  Google Scholar 

  67. A.P. Willis, P.B. Atanackovic, W. Marwood, K.J. Grant, I.G. Fuss: Optical A/D converter using SEEDs: Architecture and Implementation. Proc. IEEE Lasers and Electro-optic Society Annual Meeting 1996, LEOS 96 1, 370 (1996)

    Google Scholar 

  68. S. Tarucha, H. Okamoto: Appl. Phys. Lett. 48, 1 (1986)

    Article  ADS  Google Scholar 

  69. Y. Kawamura, K. Wakita, Y.I. Taya, Y. Yoshikuni, H. Asahi: Electron. Lett. 22, 242 (1986)

    Article  Google Scholar 

  70. Y. Kawamura, K. Wakita, Y. Yoshikuni, Y. Itaya, H. Asahi: IEEE J QE-23, 915 (1987)

    Google Scholar 

  71. H. Nakano, S. Yamashita, T. Tanaka, H. Hirao, N. Naeda: IEEE J. LT-4, 574 (1986)

    Google Scholar 

  72. Y. Zebda, R. Lipa, M. Tutt, D. Pavlidis, P. Bhattacharya, J. Pamulapati, J. Oh: IEEE Trans. ED-35, 2435 (1988)

    Google Scholar 

  73. O. Wada, N. Nobuhara, T. Sanada, M. Kuno, M. Makiuchi, T. Fujii, T. Sakarai: IEEE J. LT-7, 186 (1989)

    Google Scholar 

Supplementary Reading on Quantum Wells

  • P. Bhattacharya: Semiconductor Optoelectronic Devices (Prentice-Hall, Englewood Cliffs, NJ (1994) pp. 133–137, 294–299

    Google Scholar 

  • D.A.B. Miller, D.S. Chemia, S. Schmitt-Rink: Electric field dependence of optical properties of semiconductor quantum wells, in Semiconductors, ed. by H. Haug ( Academic, New York 1988 ) pp. 325–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunsperger, R.G. (2002). Quantum-Well Devices. In: Integrated Optics. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38843-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38843-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12096-5

  • Online ISBN: 978-3-540-38843-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics