Skip to main content

Direct Modulation of Semiconductor Lasers

  • Chapter
Integrated Optics

Part of the book series: Advanced Texts in Physics ((ADTP))

Abstract

In Chaps. 9 and 10 techniques were described for modulating the light of a semiconductor laser by using external electro-optic or acousto-optic modulators. However, it is also possible to internally modulate the output of a semiconductor laser by controlling either the current flow through the device or some internal cavity parameter. Such direct modulation of the laser output has the advantages of simplicity and potential for high frequency operation. The topic of direct modulation of injection lasers is considered in this chapter; this follows the discussions of semiconductor laser and amplifier fundamental principles and operating characteristics in Chaps. 11–14, so that the reader will be better prepared to appreciate the subtleties of the methods involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.J. Lasher: Solid State Electron. 7, 707 (1964)

    Article  ADS  Google Scholar 

  2. T.L. Paoli, J.E. Ripper: IEEE Proc. 58, 1457 (1970)

    Article  Google Scholar 

  3. T. Ikegami, Y. Suematsu: Electron. Commun. (Jpn.) B 51, 51 (1968)

    Google Scholar 

  4. See, e.g., T.P. Lee, R.M. Derosier: IEEE Proc. 62, 1176 (1974)

    Google Scholar 

  5. K. Konnerth, C. Lanza: Appl. Phys. Lett. 4, 120 (1964)

    Article  ADS  Google Scholar 

  6. M. Ross: IEEE Trans. AES-3, 324 (1967)

    Google Scholar 

  7. G.E. Fenner: Pulse width modulated laser. US Patent no. 3, 478, 280 (Nov. 1969)

    Google Scholar 

  8. L.A. D’Asaro, J.M. Cherlow, T.L. Paoli: IEEE J. QE-4, 164 (1968)

    Google Scholar 

  9. J.E. Ripper, T.L. Paoli: Appl. Phys. Lett. 15, 203 (1969)

    Article  ADS  Google Scholar 

  10. T.L. Paoli, J.E. Ripper: IEEE J QE-6, 335 (1970)

    Google Scholar 

  11. G.E. Fenner: Appl. Phys. Lett. 5, 198 (1964)

    Article  ADS  Google Scholar 

  12. W.T. Tsang, N.A. Olsson, R.A. Logan: Appl. Phys. Lett. 42, 650 (1983)

    Article  ADS  Google Scholar 

  13. L.A. Coldren, D.I. Miller, K. Iga, A. Rentschler: Appl. Phys. Lett. 38, 315 (1981)

    Article  ADS  Google Scholar 

  14. W.T. Tang, N.A. Olsson, R.A. Logan: IEEE J. QE-19, 1621 (1983)

    Google Scholar 

  15. W. Streifer, D. Yevick, T.L. Paoli, R.D. Burnham: IEEE J. QE-20, 754 (1984)

    Google Scholar 

  16. J.E. Ripper: IEEE J QE-6, 129 (1970)

    Google Scholar 

  17. H. Reick: Solid State Electron. 8, 83 (1965)

    Article  ADS  Google Scholar 

  18. D. Kleinman: Bell Syst. Tech. J. 43, 1505 (1964)

    Google Scholar 

  19. B. Goldstein, R. Wigand: IEEE Proc. 53, 195 (1965)

    Article  Google Scholar 

  20. R. Myers, P. Pershan: J. Appl. Phys. 36, 22 (1965)

    Article  ADS  Google Scholar 

  21. T. Nakano, T. Oku: Jpn. J. Appl. Phys. 6, 1212 (1967)

    Article  ADS  Google Scholar 

  22. T. Ikegaini, Y. Suematsu: IEEE Proc. 55, 122 (1967)

    Article  Google Scholar 

  23. T. Ikegami. Y. Suematsu: Electron. Commun. (Jpn.) B 51, 51 (1968)

    Google Scholar 

  24. J. Nishizawa: IEEE J. QE-4, 143 (1968)

    Google Scholar 

  25. T. Ikegami, Y. Suematsu: IEEE J. QE-4, 148 (1968)

    Google Scholar 

  26. S. Takamiga, F. Kitasawa, J. Nishizawa: IEEE Proc. 56, 135 (1968)

    Article  Google Scholar 

  27. Zh.I. Alferov: Soy. Phys. — Semicond. 3, 1170 (1970)

    Google Scholar 

  28. M.B. Panish, I. Hayashi, S. Sumski: Appl. Phys. Lett. 17, 109 (1970)

    Article  ADS  Google Scholar 

  29. M. Lakshminarayana, R.G. Hunsperger, L. Partain: Electron. Lett. 14, 640 (1978)

    Article  ADS  Google Scholar 

  30. M. Maeda, K. Nagano, I. Ikushima, M. Tanaka, K. Saito, R. Ito: 3rd Europ. Conf. Opt. Commun., NTG Fachberichte 59, 120 (1977)

    Google Scholar 

  31. H. Yania, M. Yano, T. Kamiya: IEEE J QE-11, 519 (1975)

    Google Scholar 

  32. J. Caroll, J. Farrington: Electron. Lett. 9, 166 (1973)

    Article  Google Scholar 

  33. P. Russer, S. Schultz: Arch. Elektr. Übertrag. 27, 193 (1973)

    Google Scholar 

  34. T. Ozeki, T. Ito: IEEE J. QE-9, 388 (1973)

    Google Scholar 

  35. A.J. Seeds, J.R. Forrest: Electron. Lett. 14, 829 (1978)

    Article  ADS  Google Scholar 

  36. H.W. Yen: OSA/IEEE Conf. on Laser Engineering and Applications, Washington, DC (1979) Digest p. 9D

    Google Scholar 

  37. E. Mengel, V. Ostoich: IEEE J QE-13, 359 (1977)

    Google Scholar 

  38. D.J. Channin, M. Ettenberg, H. Kressel: J. Appl. Phys. 50, 6700 (1979)

    Article  ADS  Google Scholar 

  39. D.J. Channin: SPIE Proc. 224, 128 (1980)

    Article  ADS  Google Scholar 

  40. K.Y. Lau, A. Yariv: Appl. Phys. Lett. 40, 452 (1982)

    Article  ADS  Google Scholar 

  41. K.Y. Lau, A. Yariv: Appl. Phys. Lett. 46, 326 (1985)

    Article  ADS  Google Scholar 

  42. R. Olshansky, V. Lanzisera, C. Bsu, W. Powazinik, R.B. Lauer: Appl. Phys. Lett. 49, 128 (1986)

    Article  ADS  Google Scholar 

  43. J.E. Bowers: Solid State Electron. 30, 1 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  44. T. Chen, P. Chen, J. Ungar, N. Bar-Chain: Electron. Lett. 30, 1055 (1994)

    Article  Google Scholar 

  45. H. Lipsanen, D. Coblentz, R. Logan, R. Yadvish, P. Morton, H. Temkin: IEEE Photon. Tech. Lett. 4, 673 (1992)

    Article  ADS  Google Scholar 

  46. J. Ralston, S. Weisser, K. Eisele, R. Sah, E. Larkins, J. Rosenzweig, J. Fleissner, K. Bender: IEEE Photon. Tech. Lett. 6, 1076 (1994)

    Article  ADS  Google Scholar 

  47. B. Tromberg, H. Lassen, H. Oleseni: IEEE J QE-30, 939 (1994)

    Google Scholar 

  48. Y. Suematsu, S. Arai: Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers. IEEE J Selected Topics Quantum Elect. 6, 1436 (2000)

    Article  Google Scholar 

  49. See, e.g., P.A. Rizzi: Microwave Engineering Passive Circuits ( Prentice-Hall, Englewood Cliffs, NJ 1988 ) pp. 248–299

    Google Scholar 

  50. S. Dods, M. Ogura, M. Watanabe: IEEE J. QE-29, 2631 (1993)

    Google Scholar 

  51. S. Margalit, N. Bar-Chaim, I. Ury, D. Wilt, M. Yust, A. Yariv: Monolithic integration of optical and electronic devices on semi-insulating GaAs substrates. OSA/IEEE Topical Meeting on Integrated and Guided-Wave Optics, I.cline Village, NV (1980) 16.52 I. Ury, S. Margalit, M. Yust, A. Yariv: Appl. Phys. Lett. 34, 430 (1979)

    Google Scholar 

  52. T. Fukuzawa, M. Nakamura, M. Hirao, T. Kuroda, J. Umeda: Appl. Phys. Lett. 36, 181 (1980)

    Article  ADS  Google Scholar 

  53. H. Nakano, S. Yamashita, T. Tanaka, N. Hirao, N. Naeda: IEEE J. LT-4, 574 (1986)

    Google Scholar 

  54. K. Dretting, W. Idler, P. Wiedermann: Electron. Lett. 29, 2195 (1993)

    Article  Google Scholar 

  55. P. Woolnough, P. Birdsall, P. O’Sullivan, A. Cockburn, M. Harlow: Electron. Lett. 29, 1388 (1993)

    Article  Google Scholar 

  56. N. Suzuki, H. Furuyama, Y. Hirayama, M. Morinaga, E. Eguchi, M. Kushibe, M. Funamizu, M. Nakamura: Electron. Lett. 24, 467 (1988)

    Article  Google Scholar 

  57. K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, M. Yamaguchi: 1.55 p.m wavelength-selectable microarray DFB-LD’s with monolithically integrated MMI combiner, SOA, and EA-modulator. IEEE Photonics Tech. Lett. 12, 242 (2000)

    Article  ADS  Google Scholar 

  58. S. Menezo, A. Rigny, A. Talneau, F. Delorme, S. Grosmaire, H. Nakajima, E. Vergnol, F. Alexandre, F. Gaborit: Design, realization, and characterization of a ten-wavelength monolithic source for WDM applications integrating DBR lasers with a PHASAR. IEEE J Selected Topics Quantum Electron. 6, 185 (2000)

    Article  Google Scholar 

  59. J. Wang, C. Shih, N. Chang, J. Middleton, P. Apostolakis, M. Feng: IEEE Photon. Tech. Lett. 5, 316 (1993)

    Article  ADS  Google Scholar 

  60. J. Wang, C. Shih, W. Chang, J. Middleton, P. Apostolakis, M. Feng: IEEE MTT-S Int’l Symp. on Circuits and Systems, Atlanta, GA (1993) Digest Vol. 2, p. 1047

    Google Scholar 

  61. D. Trommer, Unterborsch, F. Reier: 5th Int’l Conf. on InP and Related Materials, Paris (1993) Proc. p. 251

    Google Scholar 

  62. C. Shih, D. Barlage, J. Wang, M. Feng: IEEE MTT-S Int’l Microwave Symp., San Diego, CA (1994) Digest, Vol. 3, p. 1379

    Google Scholar 

  63. M. Bitter, R. Bauknecht, W. Hunziker H. Melchior: Monolithic InGaAs-InP p-i-n/HBT 40-Gb/s optical receiver module. IEEE Photonics Tech. Lett. 12, 74 (2000)

    Article  ADS  Google Scholar 

  64. R. Li, J.D. Schaub, S.M. Csutak, J.C. Campbell: A high-speed monolithic silicon photoreceiver fabricated on SOI. IEEE Photonics Tech. Lett. 12, 1046 (2000)

    Article  ADS  Google Scholar 

  65. M. Yust, N. Bar-Chaim, S. Izapanah, S. Margalit, I. Ury, D. Wilt, A. Yariv: Appl. Phys. Lett. 35, 796 (1979)

    Article  ADS  Google Scholar 

  66. S. Yamashita, D. Matsumoto: Waveform reshaping based on injection locking of a distributed-feedback semiconductor laser. IEEE Photonics Tech. Lett. 12, 1388 (2000)

    Article  ADS  Google Scholar 

  67. K. Jackson, E. Flint, M. Cina, D. Lacey, Y. Kwark, J. Trewhella, T. Caulfield, P. Buchmann, Ch. Harder, P. Vettiger: IEEE J LT-12, 1185 (1994)

    Google Scholar 

  68. H. Nakajima, A. Leroy, J. Charil, D. Robein: Versatile in-line transceiver chip operating in two full-duplex modes at 1.3 and 1.55 µm. IEEE Photonics Tech. Lett. 12, 202 (2000)

    Article  ADS  Google Scholar 

  69. J.M. Verdiell, R.J. Lang, K. Dzurko, S. O’Brien, J. Osinsky, D.F. Welch, D.R. Scifres: Monolithically integrated high-speed, high-power, diffraction limited semiconductor sources for space telecommunications. Proc. SPIE 2684, 108 (1996)

    Article  ADS  Google Scholar 

  70. T. Ohno, K. Sato, S. Fukushima, Y. Doi, Y. Matsuoka: Application of DBR mode-locked lasers in millimeter-wave fiber-radio system. IEEE J. Lightwave Tech. 18, 44 (2000)

    Article  ADS  Google Scholar 

Supplementary Reading on Modulation of Laser Diodes

  • G. Arnold, P. Russer, K. Petermann: Modulation of laser diodes, in Semiconductor Devices for Optical Communication 2nd edn., ed. by H. Kressel, Topics Appl. Phys., Vol. 39 (Springer, Berlin, Heidelberg 1982) Chap. 7

    Google Scholar 

  • J.K. Butler (ed.): Semiconductor Injection Lasers ( IEEE Press, New York 1980 ) pp. 332–389

    Google Scholar 

  • H.C. Casey Jr., M.B. Panish: Heterostructure Lasers ( Academic, New York 1978 ) pp. 258–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunsperger, R.G. (2002). Direct Modulation of Semiconductor Lasers. In: Integrated Optics. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38843-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38843-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12096-5

  • Online ISBN: 978-3-540-38843-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics