Skip to main content

Semiconductor Lasers

  • Chapter
  • 1172 Accesses

Part of the book series: Advanced Texts in Physics ((ADTP))

Abstract

In the preceding chapter, we discussed the basic principles of light emission in a semiconductor. Probably the most significant feature of this light emission is that it is possible to design a light source in such a way that stimulated emission of photons will predominate over both spontaneous emission and absorption. If a resonant reflecting structure such as a pair of plane, parallel end faces is provided, a lasing mode can be established and coherent optical emission will result. In this chapter, we consider several basic semiconductor laser structures and develop the quantitative theory necessary to calculate their expected performance characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, R.O. Carlson: Phys. Rev. Lett. 9, 366 (1962)

    Article  ADS  Google Scholar 

  2. M.I. Nathan, W.P. Dumke, G. Burns, F.H. Dill Jr., G. Lasher: Appl. Phys. Lett. 1, 62 (1962)

    Article  ADS  Google Scholar 

  3. T.M. Quist, R.H. Rediker, R.J. Keyes, W.E. Krag, B. Lax, A.L. McWhorter, H.J. Zeiger: Appl. Phys. Lett. 1, 91 (1962)

    Article  ADS  Google Scholar 

  4. N. Holonyak Jr., S.F. Bevacqua: Appl. Phys. Lett. 1, 82 (1962)

    Article  ADS  Google Scholar 

  5. See, e.g., A. Yariv: Optical Electronics, 4th edn. ( Holt, Rinehart and Winston, New York 1991 ) p. 116

    Google Scholar 

  6. G. Wade, C.A. Wheeler, R.G. Hunsperger, T.O. Caroll: A tunnel injection laser. 5th Int’l Cong. on Microwave Tubes, Paris, France (1964)

    Google Scholar 

  7. J. Lasher: IBM J. 7, 58 (1963)

    Google Scholar 

  8. G. Wade, C.A. Wheeler, R.G. Hunsperger: IEEE Proc. 53, 98 (1965)

    Article  Google Scholar 

  9. G. Diemer. B. Bölger: Physica 29, 600 (1963)

    Article  Google Scholar 

  10. T. Pecany: Phys. Stat. Sol. 6, 651 (1964)

    Article  ADS  Google Scholar 

  11. H. Kroemer: IEEE Proc. 51, 1782 (1963)

    Article  Google Scholar 

  12. Zh.I. Alferov: Soy. Phys. — Solid State 7, 1919 (1966)

    Google Scholar 

  13. H. Kressel, N. Nelson: RCA Rev. 30, 106 (1969)

    Google Scholar 

  14. R.H. Fowler, L. Nordheim: Proc. Roy. Soc. (London) A 119, 173 (1928)

    Article  ADS  MATH  Google Scholar 

  15. A.G. Chynoweth: Progr. Semiconduct. 4, 97 (1960)

    Google Scholar 

  16. D.L. Huffaker, D.G. Deppe: Improved performance of oxide-confined vertical-cavity surface-emitting lasers using a tunnel injection active region, Appl. Phys. Lett. 71, 1449 (1997)

    Google Scholar 

  17. D.L. Huffaker, D.G. Deppe: Intracavity Contacts for Low-Threshold Oxide-Confined Vertical-Cavity Surface-Emitting Lasers, IEEE Photonics Tech. Lett. 11, 934 (1999)

    Article  ADS  Google Scholar 

  18. B.A. Vojak, N. Holonyak, Jr., R. Chin, E.A. Rezek, R.D. Dupuis, P.D. Dapkus: Tunnel injection and phonon assisted recombination in multiple quantum-well Al Ga As-GaAs p-n heterostructure lasers grown by metalorganic chemical vapor deposition, Appl. Phys. 50, 5835 (1979)

    Google Scholar 

  19. A. Schulzgen, C. Spiegelberg, S.B. Mendes, P.M. Allemand, Y. Kawabe, M. KuwataGonokami, S Honkanen, M. Fallahi, B.N. Kippelen, N. Peyghambarian: Light amplification and laser emission in conjugated polymers. Optical Engineering 37, 1149 (1998)

    Article  ADS  Google Scholar 

Supplementary Reading on Semiconductor-Laser Fundamentals

  • N.W.. Carlson: Monolithic Diode-Laser Arrays, Springer Ser. Electron. Photon., Vol. 33 ( Springer, Berlin, Heidelberg 1994 )

    Google Scholar 

  • W.W. Chow, S.W. Koch, M. Sargent III: Semiconductor-Laser Physics (Springer, Berlin, Heidelberg 1994 )

    Google Scholar 

  • C.F. Klingshirn: Semiconductor Optics (Springer, Berlin, Heidelberg 1995 )

    Google Scholar 

  • H. Kressel, M. Ettenberg, J.P. Wittke, I. Ladany: Laser diodes and LEDs for fiber optical communications, in Semiconductor Devices for Optical Communications,2nd edn., ed. by H. Kressel (Springer, Berlin, Heidelberg 1982) pp. 9–62

    Google Scholar 

  • J. Pankove: Optical Processes in Semiconductors (Printice-Hall, Reading, MA 1971) Chap. 10

    Google Scholar 

  • A. Yariv: Quantum Electronics, 3rd edn. ( Wiley, New York 1989 ) pp. 232–263

    Google Scholar 

  • P. Yu, M. Cardona: Fundamentals of Semiconductors: Physics and Material Properties (Springer, Berlin. Heidelberg 1995 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunsperger, R.G. (2002). Semiconductor Lasers. In: Integrated Optics. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38843-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38843-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12096-5

  • Online ISBN: 978-3-540-38843-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics