Advertisement

Collisional Effects in Resonance Fluorescence

  • S. Reynaud
  • C. Cohen-Tannoudji
Part of the Springer Series in Optical Sciences book series (SSOS, volume 30)

Abstract

The collisional redistribution of near resonant scattered light has been extensively studied both experimentally [1] and theoretically [2 to 16]. The usual perturbative picture given for such a redistribution is sketched on Fig. 1. In the absence of collisions and at the lowest order in the laser intensity, the fluorescence spectrum is given by the elastic Rayleigh scattering process of Fig. la. Collisions are responsible for the appearance of a new fluorescence line around ω0 which can be interpreted as due to collision induced transitions populating the excited atomic level e from the “virtual” level reached after the absorption of a laser photon (dotted line of Fig. lb).

Keywords

Detailed Balance Condition Bare Atom Collisional Relaxation Optical Bloch Equation Impact Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.L. Carlsten, A. Szöke and M.G. Raymer: Phys. Rev. A15, 1029 (1977)ADSCrossRefGoogle Scholar
  2. [2]
    R. Karplus and J. Schwinger:Phys. Rev. 73, 1020 (1948)ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    D.L. Huber Phys. Rev. 178, 93 (1969)Google Scholar
  4. [4]
    A. Omont, E.W. Smith and J. Cooper:Astrophysical Journal 175 185 (1972)ADSCrossRefGoogle Scholar
  5. [5]
    E.G. Pestov and S.G. Rautian:Sov. Phys. JETP 37, 1025 (1973)ADSGoogle Scholar
  6. [6]
    V.S. Lisitsa and S.I. Yakovlenko:Sov. Phys. JETP 41, 233 (1975)ADSGoogle Scholar
  7. [7]
    S.P. Andreev and V.S. Lisitsa:Sov. Phys. JETP 45, 3 (1977)Google Scholar
  8. [8]
    E. Courtens and A. Szöke:Phys. Rev. A15,1588 (1-9-77)Google Scholar
  9. [9]
    B.R. Mollow:Phys. Rev. A15,1023 (197Google Scholar
  10. [10]
    C. Nienhuis and F. SchuTr:Physica 92C, 397 (1977)Google Scholar
  11. [11]
    D. Voslamber and J.B. Yelnik:Phys. Rev. Lett. 41, 1233 (1978)ADSCrossRefGoogle Scholar
  12. [12]
    S. Yeh and P.R. Berman:Phys. Rev. A19, 1106 (1979)ADSCrossRefGoogle Scholar
  13. [13]
    J. Cooper:Astrophysical Journal 228, 339 (1979)Google Scholar
  14. [14]
    G. Nienhuis and F. Schuller:J. Phys. 612, 3473 (1979)Google Scholar
  15. [15]
    J. Fiutak and J. Van Kranendonk:J. Phys. B13, 2869 (1980)MathSciNetGoogle Scholar
  16. [16]
    Y. Rabin and A. Ben-Reuven:J. Phys. B13, 2011 (1980)Google Scholar
  17. [17]
    A. Abragam:The Principles of Nuclear Magnetism ( 1961, Oxford University Press, London) ch.XII.Google Scholar
  18. [18]
    C. Cohen-Tannoudji and S. Reynaud:J. Phys. 810, 345 (1977)Google Scholar
  19. [19]
    C. Cohen-Tannoudji and S. Reynaud:in “Multiphoton Processes” ed. by J.H. Eberly and P. Lambropoulos ( Wiley, New York 1978 ) p. 103Google Scholar
  20. [20]
    S. Reynaud:Thèse (Paris, 1981) unpublishedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • S. Reynaud
    • 1
  • C. Cohen-Tannoudji
    • 1
  1. 1.Ecole Normale Supérieure and Collège de FranceParis Cedex 05France

Personalised recommendations