Advertisement

Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques

  • J. L. Hall
  • T. Baer
  • L. Hollberg
  • H. G. Robinson
Conference paper
Part of the Springer Series in Optical Sciences book series (SSOS, volume 30)

Abstract

In fundamental physical experiments using laser servolocking techniques,1 in passive ring laser gyro experiments, and in precision atomic/molecular spectroscopic measurements as well, the two overriding experimental concerns are maximizing the signal-to-noise ratio and obtaining highly symmetrical resonance profiles to facilitate precise line splitting. In this paper we discuss the technique of FM sideband optical heterodyne spectroscopy,2,3 which appears to be the experimentally optimum method for obtaining such high precision resonance profiles of maximal signal/noise ratio. We discuss the process in simple physical terms relative to stabilization of a laser to a resonant optical cavity, before turning to sub-Doppler resonance spectroscopy obtained by applying the sideband techniques to cw dye lasers and color center lasers. The final topic concerns our study of optical transients resulting from laser phase changes, studied with the optical heterodyne technique.

Keywords

Probe Beam Laser Phase Balance Mixer Resonance Profile Optical Heterodyne 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Hall, in Atomic Physics VII, edited by D. Kleppner and F. Pipkin (Plenum, New York, 1981), pp. 2b7-296.Google Scholar
  2. 2.
    G.C. Bjorklund, Opt. Lett. 5, 15 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    J.L. Hall, L. Hollberg, T. Waer and H.G. Robinson, Appl. Phys. Lett. to appear Nov. 1981.Google Scholar
  4. 4.
    C. Weiman and T.W. Hansch, Phys. Rev. Lett. 36, 1170 - 1173 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    F.V. Kowalski, W.T. Hill and A.L. Schawlow, Opt. Lett. 2, 122 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    J.J. Snyder, R.K. Raj, D. Bloch and M. Ducloy, Opt. Leff. 5, 163 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    R.K. Raj, D. Bloch, J.J. Snyder, G. Camy and M. Ducloy, Phys. Rev. Lett. 44, 1251 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    R.W.P.Urever, private communication, August 1979.Google Scholar
  9. 9.
    B. Smaller, Phys. Rev. 83, 812 (1951).ADSCrossRefGoogle Scholar
  10. 10.
    J.V. Acrivos, J. Chem. PFiys. 36, 1097 (1962).ADSGoogle Scholar
  11. 11.
    R.V. Pound, Rev. Sci. Instr TT, 490 (1946).Google Scholar
  12. 12.
    W.J. Trela, Thesis, Stanford Univ., pp. 36-41, unpublished, 1967 (under W.M. Fairbank).Google Scholar
  13. 13.
    S.R. Stein, Thesis, Stanford Univ., pp. 19-21, unpublished, 1974 (under J.P. Turneaure).Google Scholar
  14. 14.
    R. Weiss, unpublished.Google Scholar
  15. 15.
    R.V. Pound, private communication.Google Scholar
  16. 16.
    R.W.P. Dreyer, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford and A.J. Munley, September 1979. Manuscript in preparation.Google Scholar
  17. 17.
    Polarizing beam dividers/combiners could be used with appropriate wave plates or Faraday devices to produce a more energy-efficient superposition of probe and saturating beams.Google Scholar
  18. 18.
    Note that only the probe beam has the sideband frequency offset but that both probe and saturation beam optical frequencies change with laser tuning: Thus the first-order sideband resonances are offset from Q* by w/2. Line widths however are still given by (Q-0)/r = 1.Google Scholar
  19. 19.
    G.C. Bjorklund and M.D. Levenson, Phys. Rev. A (in press).Google Scholar
  20. 20.
    Small symmetry departures can arise from multiplicative effects of the Doppler background.Google Scholar
  21. 21.
    We find where Ip is the probe beam intensity and Io is the saturation intensity.Google Scholar
  22. 22.
    M.D. Levenson and G.L. Eesley, Appl. Phys. 19, 1 - 17 (1979).ADSCrossRefGoogle Scholar
  23. 23.
    R.L. Shoemaker and R.G. Brewer, Phys. Rev. ttt. 27, 631 (1971).ADSGoogle Scholar
  24. 24.
    J.L. Hall, in Atomic Physics III, edited by S.J.smith and G.K. Walters ( Plenum, New York, 1973 ), pp. 615 - 646.Google Scholar
  25. 25.
    The rf phase can be precisely set for the in-phase condition by tuning for a minimum of this noise from the balanced mixer. A calibrated phase change of 90° then produces accurate tuning for the dispersion-phase signal.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • J. L. Hall
    • 2
  • T. Baer
    • 1
  • L. Hollberg
    • 1
  • H. G. Robinson
    • 1
  1. 1.Joint Institute for Laboratory AstrophysicsUniversity of Colorado and National Bureau of StandardsBoulderUSA
  2. 2.Quantum Physics DivisionNational Bureau of StandardsUSA

Personalised recommendations