Skip to main content

Magic Angle Line Narrowing in Optical Spectroscopy

  • Conference paper
  • 147 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 26))

Abstract

Spin decoupling and line narrowing are observed for the first time in an optical transition, 3H41D2 of Pr3+. in LaF3 at 2°K, using optical FID. The 19F nuclei, when irradiated by an appropriate rf field, undergo forced precession about an effective field at the magic angle in the rotating frame. The fluctuating 19F–19F dipolar interaction is thereby quenched and the optical linewidth drops from ~10 to ~2 kHz, as predicted in a theory of spin diffusion.

Work supported in part by the U.S. Office of Naval Research. Published in Physical Review Letters 43, 1868 (1979).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).

    Article  ADS  Google Scholar 

  2. A. Abragam, Principles of Nuclear, Magnetism, (Oxford, London, 1961).

    Google Scholar 

  3. E. R. Andrew, A. Bradbury, and R. G. Eades, Nature 182, 1659 (1958).

    Article  ADS  Google Scholar 

  4. A. Abragam and J. Winter, C. R. Acad.-Sci. (Paris) 249, 1633 (1959).

    Google Scholar 

  5. F. Bloch, Phys. Rev. 111, 841 (1958).

    Article  ADS  MATH  Google Scholar 

  6. M. Lee and W. I. Goldburg, Phys. Rev. 140, A1261 (1965).

    Article  ADS  Google Scholar 

  7. D. A. McArthur, E. L. Hahn, and R. E. Waldstedt, Phys. Rev. 188, 609 (1969).

    Article  ADS  Google Scholar 

  8. J. S. Waugh, L. M. Huber, and U. Haeberlen, Phys. Rev. Lett. 20, 180 (1968)

    Article  ADS  Google Scholar 

  9. W-K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. B3, 684 (1971).

    Article  ADS  Google Scholar 

  10. M. Mehring, G. Sinning, and A. Pines, Z. Phys. B24, 73 (1976).

    Google Scholar 

  11. M. Mehring and G. Sinning, Phys. Rev. B15, 2519 (1977)1

    ADS  Google Scholar 

  12. R. G. DeVoe, A. Szabo, S. C. Rand, and R. G. Brewer, Phys. Rev. Lett. 42, 1560 (1979).

    Article  ADS  Google Scholar 

  13. J. R. Klauder and P. W. Anderson, Phys. Rev. 125, 912 (1962).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rand, S.C., Wokaun, A., Devoe, R.G., Brewer, R.G. (1981). Magic Angle Line Narrowing in Optical Spectroscopy. In: Guimaraes, W.O.N., Lin, CT., Mooradian, A. (eds) Lasers and Applications. Springer Series in Optical Sciences, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38609-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38609-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13507-5

  • Online ISBN: 978-3-540-38609-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics