Skip to main content

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 131))

Abstract

This study concentrates on the Eastern Alps and their transition into the surrounding Bohemian Massif, the Pannonian Basin, the Carpathians and the Dinarides. The geodynamic setting is characterized by the ∼N-S directed headon collision between the European and Adriatic- Apulian plates in the central part of the Eastern Alps, leading to the E-directed lateral extrusion of the Eastern Alps into the Pannonian Basin, and the transition of the Eastern Alps to the Dinarides. New seismic data about the lithosphere in this area has been derived from the wide-angle reflection and refraction experiments CELEBRATION 2000 and ALP 2002. A 3D model of the P-wave crustal velocity has been generated by tomographic methods. Further, a map of the Moho discontinuity has been constructed. Both stacking techniques and travel time inversion have been applied. Interactive modeling by 2D ray tracing along selected lines has been used to supplement the 3D evaluation. The tomographic model of the crust supplies continuous information about the P-wave velocity only in the upper crust. Bouguer gravity data has been implemented to better constrain the velocity of the lower crust by the use of a velocity-density relation. For the uppermost 10 km, the density has been derived from the seismic model. For the lower crust, a linear velocity-depth function has been deduced removing the gravity effect of the Moho topography from the Bouguer gravity. The residual gravity shows a significant regional pattern that can be related to geologic provinces (e.g. Bohemian Massif, Molasse, Pannonian Basin, and Vienna Basin) and the geodynamic situation (existence of a tectonic block forming a triple junction with the European and Adriatic-Apulian plates). An integrated model has been constructed, which fits well seismic and gravimetric data and is very close to Airy-isostatic equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aric, K., et al. (1987). Seismological studies in the Eastern Alps. In: H.W. Flügel, P. Faupl (Ed.): Geodynamics of the Eastern Alps, Franz Deuticke Verlag.

    Google Scholar 

  • Behm, M. (2006). Accuracy and resolution of a 3D seismic model of the Eastern Alps. Ph.D.-Theses, Vienna University of Technology, Vienna.

    Google Scholar 

  • Behm, M., E. Brückl, W. Chwatal, H. Thybo and CELEBRATION 2000 Working Group, ALP 2002 Working Group (2004). Seismic structure of the Eastern Alps-evidence for a “Pannonian” microplate. Poster Presentation at IGC Florence, Italy, August 20–28, 2004.

    Google Scholar 

  • Bleibinhaus, F., E. Brückl, A. Gosar, M. Grad, E. Hegedüs, P. Hrubcová, G.R. Keller, F. Sumanovac, J. Yliniemi and ALP 2002 Working Group (2004). Alp 2002 Experiment-2D Raytracing modelling and seismic tomography of selected profiles. Poster Presentation at IGC Florence, Italy, August 20–28, 2004.

    Google Scholar 

  • Braitenberg C., J. Ebbing, H.-J. Götze (2002). Inverse modelling of elastic thickness by convolution method-the Eastern Alps as a case example. Earth and Planetary Science Letters, 2002, 387–404.

    Article  Google Scholar 

  • Braitenberg C., F. Pettenati, M. Zadro (1997). Spectal and classical methods in the evaluation of Moho undulations from gravity data: the NE-Italian Alps and isostasy. Journal of Geodynamics, 23, 5–22.

    Article  Google Scholar 

  • Brückl, E., T. Bodoky, A. Gosar, M. Grad, A. Guterch, Z. Hajnal, E. Hegedüs, P. Hrubcová, G.R. Keller, A. Špičák, F. Sumanovac, H. Thybo, F. Weber and ALP 2002 Working Group (2003a). ALP 2002 seismic experiments. Stud. Geoph. Geod., 47 (2003), 671–679.

    Article  Google Scholar 

  • Brückl E., M. Behm, W. Chwatal (2003b). The application of signal detection and stacking techniques to refraction seismic data. Oral Presentation at AGU, San Francisco, 08–12 December 2003.

    Google Scholar 

  • Čermak, V., Balling, N., Della Vedova, B., Lucazeau, F., Pasquale, V., Pellis, G., Schulz, R. and Verdoya, M. (1992). Heat-flow density. In D. Blundell, R. Freeman and S. Mueller, editors, A Continent Revealed: The European Geotraverse. Cambridge University Press.

    Google Scholar 

  • Červený, V. and I. Psencik (1984). Documentation of Earthquake Algorithms. SEIS83-Numerical modeling of seismic wave fields in 2-D laterally varying layered structures by the ray method. E. R. Engdahl edit., Report SE-35, Boulder, 36–40.

    Google Scholar 

  • Christensen, N.I. and W.D. Mooney (1995). Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res., 100, 97619788.

    Google Scholar 

  • Christensen, N. (1996). Poisson ratio and crustal seismology J. Geophys. Res 101, 3139–3156.

    Article  Google Scholar 

  • Dal Moro G., C. Braitenberg and M. Zadro (1998). Geometry and mechanical and crustal properties in NE Italy based on seismic and gravity data. Bolletino di Geofisica Teorica ed Applicata, Vol. 39, N.1, 37–46.

    Google Scholar 

  • Ebbing, J. (2002). 3-D Dichteverteilung und isostatisches Verhalten der Lithosphäre in den Ostalpen. Thesis, Freie Universität Berlin, 143.

    Google Scholar 

  • Ebbing, J. (2004). The crustal structure of the Eastern Alps from a combination of 3D gravity modelling and isostatic investigations. Tectonophysics, 380/1–2, 80–104.

    Google Scholar 

  • Ebbing J., C. Braitenberg, H.-J. Götze (2001). Forward and inverse modell ing of gravity revealing insight into crustal structures of the Eastern Alps. Tectonophysics, 337/3–4, 191–208.

    Article  Google Scholar 

  • Ebbing J., C. Braitenberg, H.-J. Götze (2005). The lithospheric density structure of the Eastern Alps, Tectonophysics, in press (Transalp special volume).

    Google Scholar 

  • Giese, P., et al. (1976). Explosion Seismology in Central Europe. Eds. P. Giese, C. Prodehl, A. Stein. Springer Verlag Berlin, Heidelberg, New York.

    Google Scholar 

  • Graßl, H. (1999). NESTMK-Ein Tiefenseismikprofil in der Nordoststeiermark. Dissertation, Institut für Geophysik, Montanuniversität Leoben, Mai 1999.

    Google Scholar 

  • Graßl, H., F. Neubauer, K. Millhan, F. Weber, (2004). Seismic image of the deep crust at the eastern margin of the Alps (Austria): indications for crustal extension in a convergent origin. Tectonophysics 380, 105–122.

    Article  Google Scholar 

  • Guterch, A., M. Grad, G.R. Keller, K. Posgay, J. Vozár, A. Špičák, E. Brueckl, Z. Hajnal, H. Thybo, O. Selvi, and CELEBRATION 2000 Experiment Team (2003). CELEBRATION 2000 Seismic Experiment, Stud. Geoph. Geod., 47, 659–669.

    Google Scholar 

  • Hrubcová P, P. Sroda, A. Špičák and CELEBRATION 2000 Working Group (2005). Crustal and uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000 data. J. Geophys. Res, in press.

    Google Scholar 

  • Kraiger, G. and N. Kühtreiber (1992). Preliminary results of a new Bouguer Map of Austria. Geodesy and Physics of the Earth: Geodetic Contributions to Geodynamics, 7 th Symposium Nr. 112, 5–10 October, Potsdam. Eds. H. Montag and C. Reigber: Springer-Verlag, p.133

    Google Scholar 

  • Lillie, R.J., M. Bielik, V. Babuska and J. Plomerova (1994). Gravity modelling of the lithosphere in the Eastern Alpine-Western Carpathian-Pannonian Basin region. Tectonophysics, 231, 215–235.

    Article  Google Scholar 

  • Lippitsch, R. (2002). Lithosphere and Upper Mantle P-Wave Velocity Structure Beneath the Alps by High-Resolution Teleseismic Tomography. Ph.D.-Thesis, Swiss Federate Institute of Technology, Zürich.

    Google Scholar 

  • Lippitsch, R., E. Kissling, J. Ansorge, (2003). Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography, Journal of Geophysical Research, 108, B8, 2376, doi: 10.1029/2002JB002016

    Google Scholar 

  • Meurers, B. (1996). Investigation of the isostatic anomaly of the Eastern Alps. Acta Geod. Geophys. Hung., 31 (3–4), 389–403

    Google Scholar 

  • Meurers, B. (1993). Die Böhmische Masse Österreichs im Schwerefeld. 6. Int. Alpengrav. Koll., Leoben 1993, Österr. Beitr. Met. Geoph., 8, 69–81.

    Google Scholar 

  • Meurers, B., D. Ruess, P. Steinhauser, (1987). The Gravimetric Alpine Traverse. In: Flügel, H. and Faupl, P. (Editors): Geodynamics of the Eastern Alps. Deuticke, Vienna, 334–344.

    Google Scholar 

  • Nagy, D. (1996). The gravitational attraction of right angular prism. Geophysics 31, pp. 362371, 1966

    Google Scholar 

  • Posgay, K., et al. (1996). International deep reflection survey along the Hungarian Geotraverse, Geoph. Trans. 40 (1–2), 1–44.

    Google Scholar 

  • Ratschbacher, L., Frisch, W., Linzer, H.-G. and Merle, O. (1991). Lateral extrusion in the Eastern Alps, Part II: Structural analysis. Tectonics, 10, 256–272.

    Google Scholar 

  • Sachsenhofer, R. (2001). Syn-and post-collisional heat flow in the Cenozoic Eastern Alps. Int. J. Earth Sciences (Geol. Rundsch.), 90, 579–592.

    Article  Google Scholar 

  • Scarascia, S. and R. Cassinis, (1997). Crustal structures in the central-eastern Alpine sector: a revision of the available DSS data. Tectonophysics 271, 157–188.

    Article  Google Scholar 

  • Schmid, S., Fügenschuh, B., Kissling, E. and Schuster, R. (2004). Tectonic map and overall achitecture of the Alpine orogen. Eclogae Geologicar Helvetiae, Swiss Journal of Geosciences, 97//1, 93–117.

    Article  Google Scholar 

  • Senftl, E. (1965). Scherekarte von Österreich, Bouguer-Isanomalen, 1:1 Mill., Bundesamt für Eich-u. Vermessungswesen, Wien.

    Google Scholar 

  • Sobolev, S.V and A.Y. Babeyko, (1994). Modelling of mineralogical composition, density and elastic wave velocities in anhydrous magamatic rocks. Surveys in Geophysics 15, 515–544.

    Article  Google Scholar 

  • Steinhauser, P., D. Ruess, D. Zych, H. Haitzmann, G. Walach (1984). The geoid in Austria: Digital models of mean topographic heights and rock densities. Proc. 18th Gen. Ass. IUGG, IAG, Vol. 1, 322–338.

    Google Scholar 

  • Tomek, C. (1993a). Deep crustal structure beneath the central and inner West Carpathians. Tectonophysics 226, p. 417–431.

    Google Scholar 

  • Tomek, C. (1993b). Subducted continental margin imaged in the Carpathians of Czechoslovakia. Geology, v.21, p. 535–538.

    Article  Google Scholar 

  • Transalp Working Group (2002). First deep seismic reflection images of the Eastern Alps reveal giant crustal wedges and transcrustal ramps. Geophys. Res. Let. 29 (10), 10.1029/2002GL014911, 92-1–92-4.

    Article  Google Scholar 

  • Wagini, A., Steinhauser, P., Meurers, B. (1988). Isostatic residual gravity map of Austria. USGSA, Open file report 87–402.

    Google Scholar 

  • Weber. F., R. Schmöller, R.K. Frühwirth (1996). Results of a deep reflection seismic measurement south of Rechnitz/Burgenland/Austria. Geophys. Trans., 40, 79–93.

    Google Scholar 

  • Yan, Q.Z., J. Mechie, (1989). A fine section through the crust and lower lithosphere along the axial region of the Alps. Geophysical Journal 98, 465–488.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brückl, E., Mitterbauer, U., Behm, M. (2006). Studies on Crustal Structure and Gravity in the Eastern Alps. In: Sansò, F., Gil, A.J. (eds) Geodetic Deformation Monitoring: From Geophysical to Engineering Roles. International Association of Geodesy Symposia, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38596-7_22

Download citation

Publish with us

Policies and ethics